import io import os import uuid import logging from typing import Optional from fastapi import FastAPI, UploadFile, File, HTTPException, Depends, Header from fastapi.responses import FileResponse, JSONResponse from pydantic import BaseModel import torch import numpy as np from PIL import Image # Lazy import performed in get_model() to avoid import-time failures on Space # Import MongoDB logging from mongodb_logging import setup_mongodb_logging, get_logs_from_mongodb, clear_logs_from_mongodb EXPECTED_BEARER = "logicgo@123" # Optional Mongo persistence from pymongo import MongoClient MONGO_URI = os.environ.get("MONGO_URI", "") mongo_client = MongoClient(MONGO_URI) if MONGO_URI else None mongo_db = mongo_client.get_database("HairSwapDB") if mongo_client is not None else None uploads_col = mongo_db.get_collection("uploads") if mongo_db is not None else None results_col = mongo_db.get_collection("results") if mongo_db is not None else None logs_col = mongo_db.get_collection("logs") if mongo_db is not None else None # Setup MongoDB logging if MONGO_URI: setup_mongodb_logging(MONGO_URI, "HairSwapDB", "logs") LOGGER = logging.getLogger("hair_server") logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(name)s - %(message)s") def verify_bearer(authorization: Optional[str] = Header(None)): if not authorization: raise HTTPException(status_code=401, detail="Missing Authorization header") try: scheme, token = authorization.split(" ", 1) except ValueError: raise HTTPException(status_code=401, detail="Invalid Authorization header format") if scheme.lower() != "bearer": raise HTTPException(status_code=401, detail="Invalid auth scheme") if token != EXPECTED_BEARER: raise HTTPException(status_code=401, detail="Invalid token") return True app = FastAPI(title="Hair Swap API", version="1.0.0") @app.get("/health") def health(): return {"status": "healthy"} @app.get("/") def root(): return {"status": "ok"} class HairSwapRequest(BaseModel): source_id: str reference_id: str converter_scale: float = 1.0 scale: float = 1.0 guidance_scale: float = 1.5 controlnet_conditioning_scale: float = 1.0 # Initialize model lazily on first request _model = None # type: ignore[assignment] def get_model(): global _model if _model is None: try: LOGGER.info("Loading StableHair model ...") device = "cuda" if torch.cuda.is_available() else "cpu" dtype = torch.float16 if device == "cuda" else torch.float32 LOGGER.info(f"Using device: {device}, dtype: {dtype}") # Ensure HF token env var is where downstream libs expect it if os.environ.get("HUGGINGFACEHUB_API_TOKEN") and not os.environ.get("HUGGINGFACE_HUB_TOKEN"): os.environ["HUGGINGFACE_HUB_TOKEN"] = os.environ["HUGGINGFACEHUB_API_TOKEN"] # Backward-compat shim: some diffusers versions import a helper only present in newer hub versions. try: import huggingface_hub as _hfh # type: ignore if not hasattr(_hfh, "split_torch_state_dict_into_shards"): def _split_torch_state_dict_into_shards(state_dict, max_shard_size="10GB"): # Minimal shim: return a single shard mapping expected by callers return {"pytorch_model.bin": state_dict} _hfh.split_torch_state_dict_into_shards = _split_torch_state_dict_into_shards # type: ignore[attr-defined] except Exception: pass # Import here to defer importing diffusers/transformers until needed from infer_full import StableHair # noqa: WPS433 _model = StableHair(config="./configs/hair_transfer.yaml", device=device, weight_dtype=dtype) LOGGER.info("Model loaded successfully") except Exception as e: LOGGER.error(f"Failed to load model: {str(e)}") raise Exception(f"Model loading failed: {str(e)}") return _model # Use a writable location on Hugging Face Spaces BASE_DATA_DIR = os.environ.get("DATA_DIR", "/data") UPLOAD_DIR = os.path.join(BASE_DATA_DIR, "uploads") RESULTS_DIR = os.path.join(BASE_DATA_DIR, "results") LOGS_DIR = os.path.join(BASE_DATA_DIR, "logs") os.makedirs(UPLOAD_DIR, exist_ok=True) os.makedirs(RESULTS_DIR, exist_ok=True) os.makedirs(LOGS_DIR, exist_ok=True) @app.post("/upload") async def upload_image(image: UploadFile = File(...)): if not image.filename: raise HTTPException(status_code=400, detail="No file name provided") contents = await image.read() try: Image.open(io.BytesIO(contents)).convert("RGB") except Exception: raise HTTPException(status_code=400, detail="Invalid image file") image_id = str(uuid.uuid4()) ext = os.path.splitext(image.filename)[1] or ".png" path = os.path.join(UPLOAD_DIR, image_id + ext) with open(path, "wb") as f: f.write(contents) # Save metadata to Mongo if uploads_col is not None: try: uploads_col.insert_one({"_id": image_id, "filename": os.path.basename(path), "path": path}) except Exception: pass return {"id": image_id, "filename": os.path.basename(path)} @app.post("/get-hairswap") def get_hairswap(req: HairSwapRequest): try: # Resolve file paths def find_file(image_id: str) -> str: for name in os.listdir(UPLOAD_DIR): if name.startswith(image_id): return os.path.join(UPLOAD_DIR, name) raise HTTPException(status_code=404, detail=f"Image id not found: {image_id}") source_path = find_file(req.source_id) reference_path = find_file(req.reference_id) LOGGER.info(f"Found source: {source_path}, reference: {reference_path}") # Load model with error handling try: model = get_model() LOGGER.info("Model loaded successfully") except Exception as e: LOGGER.error(f"Model loading failed: {str(e)}") raise HTTPException(status_code=500, detail=f"Model loading failed: {str(e)}") # Perform hair transfer with error handling try: LOGGER.info("Starting hair transfer...") id_np, out_np, bald_np, ref_np = model.Hair_Transfer( source_image=source_path, reference_image=reference_path, random_seed=-1, step=30, guidance_scale=req.guidance_scale, scale=req.scale, controlnet_conditioning_scale=req.controlnet_conditioning_scale, size=512, ) LOGGER.info("Hair transfer completed successfully") except Exception as e: import traceback tb = traceback.format_exc() LOGGER.error(f"Hair transfer failed: {str(e)} | device={model.device if hasattr(model, 'device') else 'n/a'} cuda_available={torch.cuda.is_available()}\n{tb}") raise HTTPException(status_code=500, detail=f"Hair transfer failed: {str(e)}") # Save result try: result_id = str(uuid.uuid4()) out_img = Image.fromarray((out_np * 255.).astype(np.uint8)) filename = f"{result_id}.png" out_path = os.path.join(RESULTS_DIR, filename) out_img.save(out_path) LOGGER.info(f"Result saved: {out_path}") if results_col is not None: try: results_col.insert_one({ "_id": result_id, "filename": filename, "path": out_path, "source_id": req.source_id, "reference_id": req.reference_id, }) except Exception as e: LOGGER.warning(f"MongoDB save failed: {str(e)}") return {"result": filename} except Exception as e: LOGGER.error(f"Result saving failed: {str(e)}") raise HTTPException(status_code=500, detail=f"Result saving failed: {str(e)}") except HTTPException: raise except Exception as e: LOGGER.error(f"Unexpected error in get_hairswap: {str(e)}") raise HTTPException(status_code=500, detail=f"Unexpected error: {str(e)}") @app.get("/download/{filename}") def download(filename: str): path = os.path.join(RESULTS_DIR, filename) if not os.path.exists(path): raise HTTPException(status_code=404, detail="File not found") return FileResponse(path, media_type="image/png", filename=filename) @app.get("/logs") def logs(limit: int = 50, level: str = None, logger_name: str = None): """Get logs from MongoDB including both metadata and application logs""" response_data = {} # Get metadata (uploads and results) if uploads_col is not None and results_col is not None: uploads = list(uploads_col.find({}, {"_id": 1, "filename": 1}).limit(20)) results = list(results_col.find({}, {"_id": 1, "filename": 1, "source_id": 1, "reference_id": 1}).limit(20)) response_data["metadata"] = {"uploads": uploads, "results": results} else: response_data["metadata"] = {"uploads": [], "results": []} # Get application logs from MongoDB if MONGO_URI: try: app_logs = get_logs_from_mongodb(MONGO_URI, "HairSwapDB", "logs", limit, level, logger_name) response_data["application_logs"] = app_logs response_data["mongodb_status"] = "connected" except Exception as e: response_data["application_logs"] = [] response_data["mongodb_status"] = f"error: {str(e)}" else: response_data["application_logs"] = [] response_data["mongodb_status"] = "not_configured" return JSONResponse(response_data) @app.get("/logs/clear") def clear_logs(days_older_than: int = None): """Clear old logs from MongoDB""" if not MONGO_URI: raise HTTPException(status_code=400, detail="MongoDB not configured") try: deleted_count = clear_logs_from_mongodb(MONGO_URI, "HairSwapDB", "logs", days_older_than) return JSONResponse({ "message": f"Cleared {deleted_count} logs", "days_older_than": days_older_than }) except Exception as e: raise HTTPException(status_code=500, detail=f"Failed to clear logs: {str(e)}") @app.get("/logs/stats") def logs_stats(): """Get logging statistics""" if not MONGO_URI: return JSONResponse({"mongodb_status": "not_configured"}) try: client = MongoClient(MONGO_URI) db = client.get_database("HairSwapDB") logs_collection = db.get_collection("logs") # Get total count total_logs = logs_collection.count_documents({}) # Get count by level pipeline = [ {"$group": {"_id": "$level", "count": {"$sum": 1}}}, {"$sort": {"count": -1}} ] logs_by_level = list(logs_collection.aggregate(pipeline)) # Get count by logger pipeline = [ {"$group": {"_id": "$logger", "count": {"$sum": 1}}}, {"$sort": {"count": -1}}, {"$limit": 10} ] logs_by_logger = list(logs_collection.aggregate(pipeline)) return JSONResponse({ "total_logs": total_logs, "logs_by_level": logs_by_level, "top_loggers": logs_by_logger, "mongodb_status": "connected" }) except Exception as e: return JSONResponse({ "mongodb_status": f"error: {str(e)}", "total_logs": 0 })