Spaces:
Runtime error
Runtime error
add debug messages
Browse files
app.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import cv2
|
| 3 |
import tempfile
|
|
@@ -8,6 +9,13 @@ from llama_cpp import Llama
|
|
| 8 |
from llama_cpp.llama_chat_format import Llava15ChatHandler
|
| 9 |
from termcolor import cprint
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
# βββββββββββββββββββββββββββββββββββββββββ
|
| 12 |
# 1) Inline definition & registration of SmolVLM2ChatHandler
|
| 13 |
class SmolVLM2ChatHandler(Llava15ChatHandler):
|
|
@@ -41,35 +49,58 @@ MODEL_REPO = "mradermacher/SmolVLM2-500M-Video-Instruct-GGUF"
|
|
| 41 |
CLIP_REPO = "ggml-org/SmolVLM2-500M-Video-Instruct-GGUF"
|
| 42 |
|
| 43 |
def ensure_models():
|
|
|
|
| 44 |
if not os.path.exists(MODEL_FILE):
|
|
|
|
| 45 |
path = hf_hub_download(repo_id=MODEL_REPO, filename=MODEL_FILE)
|
| 46 |
os.symlink(path, MODEL_FILE)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
if not os.path.exists(CLIP_FILE):
|
|
|
|
| 48 |
path = hf_hub_download(repo_id=CLIP_REPO, filename=CLIP_FILE)
|
| 49 |
os.symlink(path, CLIP_FILE)
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
ensure_models()
|
| 52 |
|
|
|
|
| 53 |
def load_llm():
|
|
|
|
| 54 |
handler = SmolVLM2ChatHandler(clip_model_path=CLIP_FILE, verbose=False)
|
| 55 |
-
|
| 56 |
model_path=MODEL_FILE,
|
| 57 |
chat_handler=handler,
|
| 58 |
n_ctx=8192,
|
| 59 |
verbose=False,
|
| 60 |
)
|
|
|
|
|
|
|
| 61 |
|
| 62 |
llm = load_llm()
|
| 63 |
|
| 64 |
# βββββββββββββββββββββββββββββββββββββββββ
|
| 65 |
# 4) Captioning helper (stateless prompt)
|
| 66 |
def caption_frame(frame):
|
|
|
|
| 67 |
# make a writable copy
|
| 68 |
frame = frame.copy()
|
|
|
|
|
|
|
| 69 |
# save frame to temporary file for URI
|
| 70 |
with tempfile.NamedTemporaryFile(suffix='.jpg') as f:
|
| 71 |
-
cv2.imwrite(f.name, frame)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
uri = Path(f.name).absolute().as_uri()
|
|
|
|
| 73 |
|
| 74 |
# build a single prompt string
|
| 75 |
messages = [
|
|
@@ -89,20 +120,25 @@ def caption_frame(frame):
|
|
| 89 |
],
|
| 90 |
},
|
| 91 |
]
|
|
|
|
| 92 |
|
| 93 |
# stateless completion call
|
|
|
|
| 94 |
llm.chat_handler = SmolVLM2ChatHandler(clip_model_path=CLIP_FILE, verbose=False)
|
| 95 |
llm.reset() # reset n_tokens back to 0
|
| 96 |
-
llm._ctx.kv_cache_clear()
|
|
|
|
| 97 |
resp = llm.create_chat_completion(
|
| 98 |
-
messages
|
| 99 |
max_tokens=256,
|
| 100 |
temperature=0.1,
|
| 101 |
stop=["<end_of_utterance>"],
|
| 102 |
)
|
|
|
|
| 103 |
|
| 104 |
# extract caption
|
| 105 |
-
caption = (resp.get("choices", [])[0][
|
|
|
|
| 106 |
return caption
|
| 107 |
|
| 108 |
# βββββββββββββββββββββββββββββββββββββββββ
|
|
@@ -123,4 +159,5 @@ with demo:
|
|
| 123 |
)
|
| 124 |
|
| 125 |
if __name__ == "__main__":
|
|
|
|
| 126 |
demo.launch()
|
|
|
|
| 1 |
+
import logging
|
| 2 |
import gradio as gr
|
| 3 |
import cv2
|
| 4 |
import tempfile
|
|
|
|
| 9 |
from llama_cpp.llama_chat_format import Llava15ChatHandler
|
| 10 |
from termcolor import cprint
|
| 11 |
|
| 12 |
+
# Configure logging
|
| 13 |
+
logging.basicConfig(
|
| 14 |
+
level=logging.DEBUG,
|
| 15 |
+
format='[%(asctime)s] %(levelname)s: %(message)s',
|
| 16 |
+
datefmt='%Y-%m-%d %H:%M:%S'
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
# βββββββββββββββββββββββββββββββββββββββββ
|
| 20 |
# 1) Inline definition & registration of SmolVLM2ChatHandler
|
| 21 |
class SmolVLM2ChatHandler(Llava15ChatHandler):
|
|
|
|
| 49 |
CLIP_REPO = "ggml-org/SmolVLM2-500M-Video-Instruct-GGUF"
|
| 50 |
|
| 51 |
def ensure_models():
|
| 52 |
+
logging.debug("Ensuring model files are present...")
|
| 53 |
if not os.path.exists(MODEL_FILE):
|
| 54 |
+
logging.info(f"Downloading model file {MODEL_FILE} from {MODEL_REPO}...")
|
| 55 |
path = hf_hub_download(repo_id=MODEL_REPO, filename=MODEL_FILE)
|
| 56 |
os.symlink(path, MODEL_FILE)
|
| 57 |
+
logging.info(f"Created symlink: {path} -> {MODEL_FILE}")
|
| 58 |
+
else:
|
| 59 |
+
logging.debug(f"Model file {MODEL_FILE} already exists.")
|
| 60 |
+
|
| 61 |
if not os.path.exists(CLIP_FILE):
|
| 62 |
+
logging.info(f"Downloading CLIP file {CLIP_FILE} from {CLIP_REPO}...")
|
| 63 |
path = hf_hub_download(repo_id=CLIP_REPO, filename=CLIP_FILE)
|
| 64 |
os.symlink(path, CLIP_FILE)
|
| 65 |
+
logging.info(f"Created symlink: {path} -> {CLIP_FILE}")
|
| 66 |
+
else:
|
| 67 |
+
logging.debug(f"CLIP file {CLIP_FILE} already exists.")
|
| 68 |
|
| 69 |
ensure_models()
|
| 70 |
|
| 71 |
+
|
| 72 |
def load_llm():
|
| 73 |
+
logging.debug("Loading Llama model with SmolVLM2ChatHandler...")
|
| 74 |
handler = SmolVLM2ChatHandler(clip_model_path=CLIP_FILE, verbose=False)
|
| 75 |
+
llm = Llama(
|
| 76 |
model_path=MODEL_FILE,
|
| 77 |
chat_handler=handler,
|
| 78 |
n_ctx=8192,
|
| 79 |
verbose=False,
|
| 80 |
)
|
| 81 |
+
logging.info("Llama model loaded successfully.")
|
| 82 |
+
return llm
|
| 83 |
|
| 84 |
llm = load_llm()
|
| 85 |
|
| 86 |
# βββββββββββββββββββββββββββββββββββββββββ
|
| 87 |
# 4) Captioning helper (stateless prompt)
|
| 88 |
def caption_frame(frame):
|
| 89 |
+
logging.debug("caption_frame called.")
|
| 90 |
# make a writable copy
|
| 91 |
frame = frame.copy()
|
| 92 |
+
logging.debug(f"Frame shape: {frame.shape}, dtype: {frame.dtype}")
|
| 93 |
+
|
| 94 |
# save frame to temporary file for URI
|
| 95 |
with tempfile.NamedTemporaryFile(suffix='.jpg') as f:
|
| 96 |
+
success = cv2.imwrite(f.name, frame)
|
| 97 |
+
if not success:
|
| 98 |
+
logging.error(f"Failed to write frame to {f.name}")
|
| 99 |
+
else:
|
| 100 |
+
logging.debug(f"Frame written to temp file: {f.name}")
|
| 101 |
+
|
| 102 |
uri = Path(f.name).absolute().as_uri()
|
| 103 |
+
logging.debug(f"Frame URI: {uri}")
|
| 104 |
|
| 105 |
# build a single prompt string
|
| 106 |
messages = [
|
|
|
|
| 120 |
],
|
| 121 |
},
|
| 122 |
]
|
| 123 |
+
logging.debug(f"Constructed messages: {messages}")
|
| 124 |
|
| 125 |
# stateless completion call
|
| 126 |
+
logging.debug("Resetting LLM and clearing cache.")
|
| 127 |
llm.chat_handler = SmolVLM2ChatHandler(clip_model_path=CLIP_FILE, verbose=False)
|
| 128 |
llm.reset() # reset n_tokens back to 0
|
| 129 |
+
llm._ctx.kv_cache_clear() # clear any cached key/values
|
| 130 |
+
logging.debug("Sending chat completion request...")
|
| 131 |
resp = llm.create_chat_completion(
|
| 132 |
+
messages=messages,
|
| 133 |
max_tokens=256,
|
| 134 |
temperature=0.1,
|
| 135 |
stop=["<end_of_utterance>"],
|
| 136 |
)
|
| 137 |
+
logging.debug(f"LLM raw response: {resp}")
|
| 138 |
|
| 139 |
# extract caption
|
| 140 |
+
caption = (resp.get("choices", [])[0]["message"].get("content", "") or "").strip()
|
| 141 |
+
logging.debug(f"Extracted caption: {caption}")
|
| 142 |
return caption
|
| 143 |
|
| 144 |
# βββββββββββββββββββββββββββββββββββββββββ
|
|
|
|
| 159 |
)
|
| 160 |
|
| 161 |
if __name__ == "__main__":
|
| 162 |
+
logging.debug("Launching Gradio demo...")
|
| 163 |
demo.launch()
|