Spaces:
Running
Running
Add AOT compilation optimization for ZeroGPU acceleration
Browse files
app.py
CHANGED
|
@@ -11,6 +11,7 @@ from transformers import pipeline, TextIteratorStreamer
|
|
| 11 |
from transformers import AutoTokenizer
|
| 12 |
from ddgs import DDGS
|
| 13 |
import spaces # Import spaces early to enable ZeroGPU support
|
|
|
|
| 14 |
|
| 15 |
access_token=os.environ['HF_TOKEN']
|
| 16 |
|
|
@@ -329,7 +330,7 @@ def format_conversation(history, system_prompt, tokenizer):
|
|
| 329 |
return prompt
|
| 330 |
|
| 331 |
def get_duration(user_msg, chat_history, system_prompt, enable_search, max_results, max_chars, model_name, max_tokens, temperature, top_k, top_p, repeat_penalty, search_timeout):
|
| 332 |
-
base_duration =
|
| 333 |
token_duration = max_tokens * 0.1 # Estimate 0.1 seconds per token
|
| 334 |
search_duration = 30 if enable_search else 0
|
| 335 |
return base_duration + token_duration + search_duration
|
|
@@ -417,6 +418,36 @@ def chat_response(user_msg, chat_history, system_prompt,
|
|
| 417 |
enriched = system_prompt
|
| 418 |
|
| 419 |
pipe = load_pipeline(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 420 |
prompt = format_conversation(history, enriched, pipe.tokenizer)
|
| 421 |
prompt_debug = f"\n\n--- Prompt Preview ---\n```\n{prompt}\n```"
|
| 422 |
streamer = TextIteratorStreamer(pipe.tokenizer,
|
|
|
|
| 11 |
from transformers import AutoTokenizer
|
| 12 |
from ddgs import DDGS
|
| 13 |
import spaces # Import spaces early to enable ZeroGPU support
|
| 14 |
+
from torch.utils._pytree import tree_map
|
| 15 |
|
| 16 |
access_token=os.environ['HF_TOKEN']
|
| 17 |
|
|
|
|
| 330 |
return prompt
|
| 331 |
|
| 332 |
def get_duration(user_msg, chat_history, system_prompt, enable_search, max_results, max_chars, model_name, max_tokens, temperature, top_k, top_p, repeat_penalty, search_timeout):
|
| 333 |
+
base_duration = 120 # Increased for AOT compilation
|
| 334 |
token_duration = max_tokens * 0.1 # Estimate 0.1 seconds per token
|
| 335 |
search_duration = 30 if enable_search else 0
|
| 336 |
return base_duration + token_duration + search_duration
|
|
|
|
| 418 |
enriched = system_prompt
|
| 419 |
|
| 420 |
pipe = load_pipeline(model_name)
|
| 421 |
+
|
| 422 |
+
# AOT compilation for performance optimization
|
| 423 |
+
try:
|
| 424 |
+
with spaces.aoti_capture(pipe.model) as call:
|
| 425 |
+
pipe("Hello world", max_new_tokens=5, do_sample=False, pad_token_id=pipe.tokenizer.eos_token_id)
|
| 426 |
+
|
| 427 |
+
# Define dynamic shapes for variable sequence lengths
|
| 428 |
+
seq_dim = torch.export.Dim('seq', min=1, max=4096)
|
| 429 |
+
dynamic_shapes = tree_map(lambda v: None, call.kwargs)
|
| 430 |
+
|
| 431 |
+
# Set dynamic dimensions for common inputs
|
| 432 |
+
if 'input_ids' in call.kwargs:
|
| 433 |
+
dynamic_shapes['input_ids'] = {1: seq_dim}
|
| 434 |
+
if 'attention_mask' in call.kwargs:
|
| 435 |
+
dynamic_shapes['attention_mask'] = {1: seq_dim}
|
| 436 |
+
if 'position_ids' in call.kwargs:
|
| 437 |
+
dynamic_shapes['position_ids'] = {1: seq_dim}
|
| 438 |
+
|
| 439 |
+
exported = torch.export.export(
|
| 440 |
+
pipe.model,
|
| 441 |
+
args=call.args,
|
| 442 |
+
kwargs=call.kwargs,
|
| 443 |
+
dynamic_shapes=dynamic_shapes
|
| 444 |
+
)
|
| 445 |
+
compiled = spaces.aoti_compile(exported)
|
| 446 |
+
spaces.aoti_apply(compiled, pipe.model)
|
| 447 |
+
print(f"AOT compilation successful for {model_name}")
|
| 448 |
+
except Exception as e:
|
| 449 |
+
print(f"AOT compilation failed for {model_name}: {e}")
|
| 450 |
+
|
| 451 |
prompt = format_conversation(history, enriched, pipe.tokenizer)
|
| 452 |
prompt_debug = f"\n\n--- Prompt Preview ---\n```\n{prompt}\n```"
|
| 453 |
streamer = TextIteratorStreamer(pipe.tokenizer,
|