Spaces:
Running
Running
Improve model size detection: replace ad-hoc string parsing with reliable params_b field in MODELS dict
Browse files
app.py
CHANGED
|
@@ -29,46 +29,56 @@ cancel_event = threading.Event()
|
|
| 29 |
MODELS = {
|
| 30 |
"Qwen/Qwen3-Next-80B-A3B-Instruct-FP8": {
|
| 31 |
"repo_id": "Qwen/Qwen3-Next-80B-A3B-Instruct-FP8",
|
| 32 |
-
"description": "Sparse Mixture-of-Experts (MoE) causal language model with 80B total parameters and approximately 3B activated per inference step. Features include native 32,768-token context (extendable to 131,072 via YaRN), 16 query heads and 2 KV heads, head dimension of 256, and FP8 quantization for efficiency. Optimized for fast, stable instruction-following dialogue without 'thinking' traces, making it ideal for general chat and low-latency applications [[2]][[3]][[5]][[8]]."
|
|
|
|
| 33 |
},
|
| 34 |
"Qwen/Qwen3-Next-80B-A3B-Thinking-FP8": {
|
| 35 |
"repo_id": "Qwen/Qwen3-Next-80B-A3B-Thinking-FP8",
|
| 36 |
-
"description": "Sparse Mixture-of-Experts (MoE) causal language model with 80B total parameters and approximately 3B activated per inference step. Features include native 32,768-token context (extendable to 131,072 via YaRN), 16 query heads and 2 KV heads, head dimension of 256, and FP8 quantization. Specialized for complex reasoning, math, and coding tasks, this model outputs structured 'thinking' traces by default and is designed to be used with a reasoning parser [[10]][[11]][[14]][[18]]."
|
|
|
|
| 37 |
},
|
| 38 |
"Qwen3-32B-FP8": {
|
| 39 |
"repo_id": "Qwen/Qwen3-32B-FP8",
|
| 40 |
-
"description": "Dense causal language model with 32.8B total parameters (31.2B non-embedding), 64 layers, 64 query heads & 8 KV heads, native 32,768-token context (extendable to 131,072 via YaRN). Features seamless switching between thinking mode (for complex reasoning, math, coding) and non-thinking mode (for efficient dialogue), strong multilingual support (100+ languages), and leading open-source agent capabilities."
|
|
|
|
| 41 |
},
|
| 42 |
# ~30.5B total parameters (MoE: 3.3B activated)
|
| 43 |
"Qwen3-30B-A3B-Instruct-2507": {
|
| 44 |
"repo_id": "Qwen/Qwen3-30B-A3B-Instruct-2507",
|
| 45 |
-
"description": "non-thinking-mode MoE model based on Qwen3-30B-A3B-Instruct-2507. Features 30.5B total parameters (3.3B activated), 128 experts (8 activated), 48 layers, and native 262,144-token context. Excels in instruction following, logical reasoning, multilingualism, coding, and long-context understanding. Supports only non-thinking mode (no <think> blocks). Quantized using AWQ (W4A16) with lm_head and gating layers preserved in higher precision."
|
|
|
|
| 46 |
},
|
| 47 |
"Qwen3-30B-A3B-Thinking-2507": {
|
| 48 |
"repo_id": "Qwen/Qwen3-30B-A3B-Thinking-2507",
|
| 49 |
-
"description": "thinking-mode MoE model based on Qwen3-30B-A3B-Thinking-2507. Contains 30.5B total parameters (3.3B activated), 128 experts (8 activated), 48 layers, and 262,144-token native context. Optimized for deep reasoning in mathematics, science, coding, and agent tasks. Outputs include automatic reasoning delimiters (<think>...</think>). Quantized with AWQ (W4A16), preserving lm_head and expert gating layers."
|
|
|
|
| 50 |
},
|
| 51 |
"gpt-oss-20b-BF16": {
|
| 52 |
"repo_id": "unsloth/gpt-oss-20b-BF16",
|
| 53 |
-
"description": "A 20B-parameter open-source GPT-style language model quantized to INT4 using AutoRound, with FP8 key-value cache for efficient inference. Optimized for performance and memory efficiency on Intel hardware while maintaining strong language generation capabilities."
|
|
|
|
| 54 |
},
|
| 55 |
"Qwen3-4B-Instruct-2507": {
|
| 56 |
"repo_id": "Qwen/Qwen3-4B-Instruct-2507",
|
| 57 |
-
"description": "Updated non-thinking instruct variant of Qwen3-4B with 4.0B parameters, featuring significant improvements in instruction following, logical reasoning, multilingualism, and 256K long-context understanding. Strong performance across knowledge, coding, alignment, and agent benchmarks."
|
|
|
|
| 58 |
},
|
| 59 |
"Apriel-1.5-15b-Thinker": {
|
| 60 |
"repo_id": "ServiceNow-AI/Apriel-1.5-15b-Thinker",
|
| 61 |
-
"description": "Multimodal reasoning model with 15B parameters, trained via extensive mid-training on text and image data, and fine-tuned only on text (no image SFT). Achieves competitive performance on reasoning benchmarks like Artificial Analysis (score: 52), Tau2 Bench Telecom (68), and IFBench (62). Supports both text and image understanding, fits on a single GPU, and includes structured reasoning output with tool and function calling capabilities."
|
|
|
|
| 62 |
},
|
| 63 |
|
| 64 |
# 14.8B total parameters
|
| 65 |
"Qwen3-14B": {
|
| 66 |
"repo_id": "Qwen/Qwen3-14B",
|
| 67 |
-
"description": "Dense causal language model with 14.8 B total parameters (13.2 B non-embedding), 40 layers, 40 query heads & 8 KV heads, 32 768-token context (131 072 via YaRN), enhanced human preference alignment & advanced agent integration."
|
|
|
|
| 68 |
},
|
| 69 |
"Qwen/Qwen3-14B-FP8": {
|
| 70 |
"repo_id": "Qwen/Qwen3-14B-FP8",
|
| 71 |
-
"description": "FP8-quantized version of Qwen3-14B for efficient inference."
|
|
|
|
| 72 |
},
|
| 73 |
|
| 74 |
# ~15B (commented out in original, but larger than 14B)
|
|
@@ -83,34 +93,41 @@ MODELS = {
|
|
| 83 |
# 4.3B
|
| 84 |
"Phi-4-mini-Reasoning": {
|
| 85 |
"repo_id": "microsoft/Phi-4-mini-reasoning",
|
| 86 |
-
"description": "Phi-4-mini-Reasoning (4.3B parameters)"
|
|
|
|
| 87 |
},
|
| 88 |
"Phi-4-mini-Instruct": {
|
| 89 |
"repo_id": "microsoft/Phi-4-mini-instruct",
|
| 90 |
-
"description": "Phi-4-mini-Instruct (4.3B parameters)"
|
|
|
|
| 91 |
},
|
| 92 |
|
| 93 |
# 4.0B
|
| 94 |
"Qwen3-4B": {
|
| 95 |
"repo_id": "Qwen/Qwen3-4B",
|
| 96 |
-
"description": "Dense causal language model with 4.0 B total parameters (3.6 B non-embedding), 36 layers, 32 query heads & 8 KV heads, native 32 768-token context (extendable to 131 072 via YaRN), balanced mid-range capacity & long-context reasoning."
|
|
|
|
| 97 |
},
|
| 98 |
|
| 99 |
"Gemma-3-4B-IT": {
|
| 100 |
"repo_id": "unsloth/gemma-3-4b-it",
|
| 101 |
-
"description": "Gemma-3-4B-IT"
|
|
|
|
| 102 |
},
|
| 103 |
"MiniCPM3-4B": {
|
| 104 |
"repo_id": "openbmb/MiniCPM3-4B",
|
| 105 |
-
"description": "MiniCPM3-4B"
|
|
|
|
| 106 |
},
|
| 107 |
"Gemma-3n-E4B": {
|
| 108 |
"repo_id": "google/gemma-3n-E4B",
|
| 109 |
-
"description": "Gemma 3n base model with effective 4 B parameters (≈3 GB VRAM)"
|
|
|
|
| 110 |
},
|
| 111 |
"SmallThinker-4BA0.6B-Instruct": {
|
| 112 |
"repo_id": "PowerInfer/SmallThinker-4BA0.6B-Instruct",
|
| 113 |
-
"description": "SmallThinker 4 B backbone with 0.6 B activated parameters, instruction‑tuned"
|
|
|
|
| 114 |
},
|
| 115 |
|
| 116 |
# ~3B
|
|
@@ -120,151 +137,181 @@ MODELS = {
|
|
| 120 |
# },
|
| 121 |
"Qwen2.5-Taiwan-3B-Reason-GRPO": {
|
| 122 |
"repo_id": "benchang1110/Qwen2.5-Taiwan-3B-Reason-GRPO",
|
| 123 |
-
"description": "Qwen2.5-Taiwan model with 3 B parameters, Reason-GRPO fine-tuned"
|
|
|
|
| 124 |
},
|
| 125 |
"Llama-3.2-Taiwan-3B-Instruct": {
|
| 126 |
"repo_id": "lianghsun/Llama-3.2-Taiwan-3B-Instruct",
|
| 127 |
-
"description": "Llama-3.2-Taiwan-3B-Instruct"
|
|
|
|
| 128 |
},
|
| 129 |
"Qwen2.5-3B-Instruct": {
|
| 130 |
"repo_id": "Qwen/Qwen2.5-3B-Instruct",
|
| 131 |
-
"description": "Qwen2.5-3B-Instruct"
|
|
|
|
| 132 |
},
|
| 133 |
"Qwen2.5-Omni-3B": {
|
| 134 |
"repo_id": "Qwen/Qwen2.5-Omni-3B",
|
| 135 |
-
"description": "Qwen2.5-Omni-3B"
|
|
|
|
| 136 |
},
|
| 137 |
"Granite-4.0-Micro": {
|
| 138 |
"repo_id": "ibm-granite/granite-4.0-micro",
|
| 139 |
-
"description": "A 3B-parameter long-context instruct model from IBM, finetuned for enhanced instruction following and tool-calling. Supports 12 languages including English, Chinese, Arabic, and Japanese. Built on a dense Transformer with GQA, RoPE, SwiGLU, and 128K context length. Trained using SFT, RL alignment, and model merging techniques for enterprise applications."
|
|
|
|
| 140 |
},
|
| 141 |
|
| 142 |
# 2.6B
|
| 143 |
"LFM2-2.6B": {
|
| 144 |
"repo_id": "LiquidAI/LFM2-2.6B",
|
| 145 |
-
"description": "The 2.6B parameter model in the LFM2 series, it outperforms models in the 3B+ class and features a hybrid architecture for faster inference."
|
|
|
|
| 146 |
},
|
| 147 |
|
| 148 |
# 1.7B
|
| 149 |
"Qwen3-1.7B": {
|
| 150 |
"repo_id": "Qwen/Qwen3-1.7B",
|
| 151 |
-
"description": "Dense causal language model with 1.7 B total parameters (1.4 B non-embedding), 28 layers, 16 query heads & 8 KV heads, 32 768-token context, stronger reasoning vs. 0.6 B variant, dual-mode inference, instruction following across 100+ languages."
|
|
|
|
| 152 |
},
|
| 153 |
|
| 154 |
# ~2B (effective)
|
| 155 |
"Gemma-3n-E2B": {
|
| 156 |
"repo_id": "google/gemma-3n-E2B",
|
| 157 |
-
"description": "Gemma 3n base model with effective 2 B parameters (≈2 GB VRAM)"
|
|
|
|
| 158 |
},
|
| 159 |
|
| 160 |
# 1.5B
|
| 161 |
"Nemotron-Research-Reasoning-Qwen-1.5B": {
|
| 162 |
"repo_id": "nvidia/Nemotron-Research-Reasoning-Qwen-1.5B",
|
| 163 |
-
"description": "Nemotron-Research-Reasoning-Qwen-1.5B"
|
|
|
|
| 164 |
},
|
| 165 |
"Falcon-H1-1.5B-Instruct": {
|
| 166 |
"repo_id": "tiiuae/Falcon-H1-1.5B-Instruct",
|
| 167 |
-
"description": "Falcon‑H1 model with 1.5 B parameters, instruction‑tuned"
|
|
|
|
| 168 |
},
|
| 169 |
"Qwen2.5-Taiwan-1.5B-Instruct": {
|
| 170 |
"repo_id": "benchang1110/Qwen2.5-Taiwan-1.5B-Instruct",
|
| 171 |
-
"description": "Qwen2.5-Taiwan-1.5B-Instruct"
|
|
|
|
| 172 |
},
|
| 173 |
|
| 174 |
# 1.2B
|
| 175 |
"LFM2-1.2B": {
|
| 176 |
"repo_id": "LiquidAI/LFM2-1.2B",
|
| 177 |
-
"description": "A 1.2B parameter hybrid language model from Liquid AI, designed for efficient on-device and edge AI deployment, outperforming larger models like Llama-2-7b-hf in specific tasks."
|
|
|
|
| 178 |
},
|
| 179 |
|
| 180 |
# 1.1B
|
| 181 |
"Taiwan-ELM-1_1B-Instruct": {
|
| 182 |
"repo_id": "liswei/Taiwan-ELM-1_1B-Instruct",
|
| 183 |
-
"description": "Taiwan-ELM-1_1B-Instruct"
|
|
|
|
| 184 |
},
|
| 185 |
|
| 186 |
# 1B
|
| 187 |
"Llama-3.2-Taiwan-1B": {
|
| 188 |
"repo_id": "lianghsun/Llama-3.2-Taiwan-1B",
|
| 189 |
-
"description": "Llama-3.2-Taiwan base model with 1 B parameters"
|
|
|
|
| 190 |
},
|
| 191 |
|
| 192 |
# 700M
|
| 193 |
"LFM2-700M": {
|
| 194 |
"repo_id": "LiquidAI/LFM2-700M",
|
| 195 |
-
"description": "A 700M parameter model from the LFM2 family, designed for high efficiency on edge devices with a hybrid architecture of multiplicative gates and short convolutions."
|
|
|
|
| 196 |
},
|
| 197 |
|
| 198 |
# 600M
|
| 199 |
"Qwen3-0.6B": {
|
| 200 |
"repo_id": "Qwen/Qwen3-0.6B",
|
| 201 |
-
"description": "Dense causal language model with 0.6 B total parameters (0.44 B non-embedding), 28 transformer layers, 16 query heads & 8 KV heads, native 32 768-token context window, dual-mode generation, full multilingual & agentic capabilities."
|
|
|
|
| 202 |
},
|
| 203 |
"Qwen3-0.6B-Taiwan": {
|
| 204 |
"repo_id": "ShengweiPeng/Qwen3-0.6B-Taiwan",
|
| 205 |
-
"description": "Qwen3-Taiwan model with 0.6 B parameters"
|
|
|
|
| 206 |
},
|
| 207 |
|
| 208 |
# 500M
|
| 209 |
"Qwen2.5-0.5B-Taiwan-Instruct": {
|
| 210 |
"repo_id": "ShengweiPeng/Qwen2.5-0.5B-Taiwan-Instruct",
|
| 211 |
-
"description": "Qwen2.5-Taiwan model with 0.5 B parameters, instruction-tuned"
|
|
|
|
| 212 |
},
|
| 213 |
|
| 214 |
# 360M
|
| 215 |
"SmolLM2-360M-Instruct": {
|
| 216 |
"repo_id": "HuggingFaceTB/SmolLM2-360M-Instruct",
|
| 217 |
-
"description": "Original SmolLM2‑360M Instruct"
|
|
|
|
| 218 |
},
|
| 219 |
"SmolLM2-360M-Instruct-TaiwanChat": {
|
| 220 |
"repo_id": "Luigi/SmolLM2-360M-Instruct-TaiwanChat",
|
| 221 |
-
"description": "SmolLM2‑360M Instruct fine-tuned on TaiwanChat"
|
|
|
|
| 222 |
},
|
| 223 |
|
| 224 |
# 350M
|
| 225 |
"LFM2-350M": {
|
| 226 |
"repo_id": "LiquidAI/LFM2-350M",
|
| 227 |
-
"description": "A compact 350M parameter hybrid model optimized for edge and on-device applications, offering significantly faster training and inference speeds compared to models like Qwen3."
|
|
|
|
| 228 |
},
|
| 229 |
|
| 230 |
# 270M
|
| 231 |
"parser_model_ner_gemma_v0.1": {
|
| 232 |
"repo_id": "myfi/parser_model_ner_gemma_v0.1",
|
| 233 |
-
"description": "A lightweight named‑entity‑like (NER) parser fine‑tuned from Google’s **Gemma‑3‑270M** model. The base Gemma‑3‑270M is a 270 M‑parameter, hyper‑efficient LLM designed for on‑device inference, supporting >140 languages, a 128 k‑token context window, and instruction‑following capabilities [2][7]. This variant is further trained on standard NER corpora (e.g., CoNLL‑2003, OntoNotes) to extract PERSON, ORG, LOC, and MISC entities with high precision while keeping the memory footprint low (≈240 MB VRAM in BF16 quantized form) [1]. It is released under the Apache‑2.0 license and can be used for fast, cost‑effective entity extraction in low‑resource environments."
|
|
|
|
| 234 |
},
|
| 235 |
"Gemma-3-Taiwan-270M-it": {
|
| 236 |
"repo_id": "lianghsun/Gemma-3-Taiwan-270M-it",
|
| 237 |
-
"description": "google/gemma-3-270m-it fintuned on Taiwan Chinese dataset"
|
|
|
|
| 238 |
},
|
| 239 |
"gemma-3-270m-it": {
|
| 240 |
"repo_id": "google/gemma-3-270m-it",
|
| 241 |
"description": "Gemma‑3‑270M‑IT is a compact, 270‑million‑parameter language model fine‑tuned for Italian, offering fast and efficient on‑device text generation and comprehension in the Italian language.",
|
|
|
|
| 242 |
},
|
| 243 |
"Taiwan-ELM-270M-Instruct": {
|
| 244 |
"repo_id": "liswei/Taiwan-ELM-270M-Instruct",
|
| 245 |
-
"description": "Taiwan-ELM-270M-Instruct"
|
|
|
|
| 246 |
},
|
| 247 |
|
| 248 |
# 135M
|
| 249 |
"SmolLM2-135M-multilingual-base": {
|
| 250 |
"repo_id": "agentlans/SmolLM2-135M-multilingual-base",
|
| 251 |
-
"description": "SmolLM2-135M-multilingual-base"
|
|
|
|
| 252 |
},
|
| 253 |
"SmolLM-135M-Taiwan-Instruct-v1.0": {
|
| 254 |
"repo_id": "benchang1110/SmolLM-135M-Taiwan-Instruct-v1.0",
|
| 255 |
-
"description": "135-million-parameter F32 safetensors instruction-finetuned variant of SmolLM-135M-Taiwan, trained on the 416 k-example ChatTaiwan dataset for Traditional Chinese conversational and instruction-following tasks"
|
|
|
|
| 256 |
},
|
| 257 |
"SmolLM2_135M_Grpo_Gsm8k": {
|
| 258 |
"repo_id": "prithivMLmods/SmolLM2_135M_Grpo_Gsm8k",
|
| 259 |
-
"description": "SmolLM2_135M_Grpo_Gsm8k"
|
|
|
|
| 260 |
},
|
| 261 |
"SmolLM2-135M-Instruct": {
|
| 262 |
"repo_id": "HuggingFaceTB/SmolLM2-135M-Instruct",
|
| 263 |
-
"description": "Original SmolLM2‑135M Instruct"
|
|
|
|
| 264 |
},
|
| 265 |
"SmolLM2-135M-Instruct-TaiwanChat": {
|
| 266 |
"repo_id": "Luigi/SmolLM2-135M-Instruct-TaiwanChat",
|
| 267 |
-
"description": "SmolLM2‑135M Instruct fine-tuned on TaiwanChat"
|
|
|
|
| 268 |
},
|
| 269 |
}
|
| 270 |
|
|
@@ -338,34 +385,8 @@ def format_conversation(history, system_prompt, tokenizer):
|
|
| 338 |
return prompt
|
| 339 |
|
| 340 |
def get_duration(user_msg, chat_history, system_prompt, enable_search, max_results, max_chars, model_name, max_tokens, temperature, top_k, top_p, repeat_penalty, search_timeout):
|
| 341 |
-
#
|
| 342 |
-
model_size = 0
|
| 343 |
-
if '30B' in model_name or '32B' in model_name:
|
| 344 |
-
model_size = 30
|
| 345 |
-
elif '20B' in model_name:
|
| 346 |
-
model_size = 20
|
| 347 |
-
elif '15B' in model_name or '14B' in model_name:
|
| 348 |
-
model_size = 15
|
| 349 |
-
elif '4B' in model_name or '3B' in model_name:
|
| 350 |
-
model_size = 4
|
| 351 |
-
elif '2B' in model_name or '1.7B' in model_name:
|
| 352 |
-
model_size = 2
|
| 353 |
-
elif '1.5B' in model_name or '1.2B' in model_name or '1.1B' in model_name:
|
| 354 |
-
model_size = 1.5
|
| 355 |
-
elif '1B' in model_name:
|
| 356 |
-
model_size = 1
|
| 357 |
-
elif '700M' in model_name or '600M' in model_name:
|
| 358 |
-
model_size = 0.7
|
| 359 |
-
elif '500M' in model_name:
|
| 360 |
-
model_size = 0.5
|
| 361 |
-
elif '360M' in model_name or '350M' in model_name:
|
| 362 |
-
model_size = 0.35
|
| 363 |
-
elif '270M' in model_name:
|
| 364 |
-
model_size = 0.27
|
| 365 |
-
elif '135M' in model_name:
|
| 366 |
-
model_size = 0.135
|
| 367 |
-
else:
|
| 368 |
-
model_size = 4 # default
|
| 369 |
|
| 370 |
# Only use AOT for models >= 2B parameters
|
| 371 |
use_aot = model_size >= 2
|
|
|
|
| 29 |
MODELS = {
|
| 30 |
"Qwen/Qwen3-Next-80B-A3B-Instruct-FP8": {
|
| 31 |
"repo_id": "Qwen/Qwen3-Next-80B-A3B-Instruct-FP8",
|
| 32 |
+
"description": "Sparse Mixture-of-Experts (MoE) causal language model with 80B total parameters and approximately 3B activated per inference step. Features include native 32,768-token context (extendable to 131,072 via YaRN), 16 query heads and 2 KV heads, head dimension of 256, and FP8 quantization for efficiency. Optimized for fast, stable instruction-following dialogue without 'thinking' traces, making it ideal for general chat and low-latency applications [[2]][[3]][[5]][[8]].",
|
| 33 |
+
"params_b": 80.0
|
| 34 |
},
|
| 35 |
"Qwen/Qwen3-Next-80B-A3B-Thinking-FP8": {
|
| 36 |
"repo_id": "Qwen/Qwen3-Next-80B-A3B-Thinking-FP8",
|
| 37 |
+
"description": "Sparse Mixture-of-Experts (MoE) causal language model with 80B total parameters and approximately 3B activated per inference step. Features include native 32,768-token context (extendable to 131,072 via YaRN), 16 query heads and 2 KV heads, head dimension of 256, and FP8 quantization. Specialized for complex reasoning, math, and coding tasks, this model outputs structured 'thinking' traces by default and is designed to be used with a reasoning parser [[10]][[11]][[14]][[18]].",
|
| 38 |
+
"params_b": 80.0
|
| 39 |
},
|
| 40 |
"Qwen3-32B-FP8": {
|
| 41 |
"repo_id": "Qwen/Qwen3-32B-FP8",
|
| 42 |
+
"description": "Dense causal language model with 32.8B total parameters (31.2B non-embedding), 64 layers, 64 query heads & 8 KV heads, native 32,768-token context (extendable to 131,072 via YaRN). Features seamless switching between thinking mode (for complex reasoning, math, coding) and non-thinking mode (for efficient dialogue), strong multilingual support (100+ languages), and leading open-source agent capabilities.",
|
| 43 |
+
"params_b": 32.8
|
| 44 |
},
|
| 45 |
# ~30.5B total parameters (MoE: 3.3B activated)
|
| 46 |
"Qwen3-30B-A3B-Instruct-2507": {
|
| 47 |
"repo_id": "Qwen/Qwen3-30B-A3B-Instruct-2507",
|
| 48 |
+
"description": "non-thinking-mode MoE model based on Qwen3-30B-A3B-Instruct-2507. Features 30.5B total parameters (3.3B activated), 128 experts (8 activated), 48 layers, and native 262,144-token context. Excels in instruction following, logical reasoning, multilingualism, coding, and long-context understanding. Supports only non-thinking mode (no <think> blocks). Quantized using AWQ (W4A16) with lm_head and gating layers preserved in higher precision.",
|
| 49 |
+
"params_b": 30.5
|
| 50 |
},
|
| 51 |
"Qwen3-30B-A3B-Thinking-2507": {
|
| 52 |
"repo_id": "Qwen/Qwen3-30B-A3B-Thinking-2507",
|
| 53 |
+
"description": "thinking-mode MoE model based on Qwen3-30B-A3B-Thinking-2507. Contains 30.5B total parameters (3.3B activated), 128 experts (8 activated), 48 layers, and 262,144-token native context. Optimized for deep reasoning in mathematics, science, coding, and agent tasks. Outputs include automatic reasoning delimiters (<think>...</think>). Quantized with AWQ (W4A16), preserving lm_head and expert gating layers.",
|
| 54 |
+
"params_b": 30.5
|
| 55 |
},
|
| 56 |
"gpt-oss-20b-BF16": {
|
| 57 |
"repo_id": "unsloth/gpt-oss-20b-BF16",
|
| 58 |
+
"description": "A 20B-parameter open-source GPT-style language model quantized to INT4 using AutoRound, with FP8 key-value cache for efficient inference. Optimized for performance and memory efficiency on Intel hardware while maintaining strong language generation capabilities.",
|
| 59 |
+
"params_b": 20.0
|
| 60 |
},
|
| 61 |
"Qwen3-4B-Instruct-2507": {
|
| 62 |
"repo_id": "Qwen/Qwen3-4B-Instruct-2507",
|
| 63 |
+
"description": "Updated non-thinking instruct variant of Qwen3-4B with 4.0B parameters, featuring significant improvements in instruction following, logical reasoning, multilingualism, and 256K long-context understanding. Strong performance across knowledge, coding, alignment, and agent benchmarks.",
|
| 64 |
+
"params_b": 4.0
|
| 65 |
},
|
| 66 |
"Apriel-1.5-15b-Thinker": {
|
| 67 |
"repo_id": "ServiceNow-AI/Apriel-1.5-15b-Thinker",
|
| 68 |
+
"description": "Multimodal reasoning model with 15B parameters, trained via extensive mid-training on text and image data, and fine-tuned only on text (no image SFT). Achieves competitive performance on reasoning benchmarks like Artificial Analysis (score: 52), Tau2 Bench Telecom (68), and IFBench (62). Supports both text and image understanding, fits on a single GPU, and includes structured reasoning output with tool and function calling capabilities.",
|
| 69 |
+
"params_b": 15.0
|
| 70 |
},
|
| 71 |
|
| 72 |
# 14.8B total parameters
|
| 73 |
"Qwen3-14B": {
|
| 74 |
"repo_id": "Qwen/Qwen3-14B",
|
| 75 |
+
"description": "Dense causal language model with 14.8 B total parameters (13.2 B non-embedding), 40 layers, 40 query heads & 8 KV heads, 32 768-token context (131 072 via YaRN), enhanced human preference alignment & advanced agent integration.",
|
| 76 |
+
"params_b": 14.8
|
| 77 |
},
|
| 78 |
"Qwen/Qwen3-14B-FP8": {
|
| 79 |
"repo_id": "Qwen/Qwen3-14B-FP8",
|
| 80 |
+
"description": "FP8-quantized version of Qwen3-14B for efficient inference.",
|
| 81 |
+
"params_b": 14.8
|
| 82 |
},
|
| 83 |
|
| 84 |
# ~15B (commented out in original, but larger than 14B)
|
|
|
|
| 93 |
# 4.3B
|
| 94 |
"Phi-4-mini-Reasoning": {
|
| 95 |
"repo_id": "microsoft/Phi-4-mini-reasoning",
|
| 96 |
+
"description": "Phi-4-mini-Reasoning (4.3B parameters)",
|
| 97 |
+
"params_b": 4.3
|
| 98 |
},
|
| 99 |
"Phi-4-mini-Instruct": {
|
| 100 |
"repo_id": "microsoft/Phi-4-mini-instruct",
|
| 101 |
+
"description": "Phi-4-mini-Instruct (4.3B parameters)",
|
| 102 |
+
"params_b": 4.3
|
| 103 |
},
|
| 104 |
|
| 105 |
# 4.0B
|
| 106 |
"Qwen3-4B": {
|
| 107 |
"repo_id": "Qwen/Qwen3-4B",
|
| 108 |
+
"description": "Dense causal language model with 4.0 B total parameters (3.6 B non-embedding), 36 layers, 32 query heads & 8 KV heads, native 32 768-token context (extendable to 131 072 via YaRN), balanced mid-range capacity & long-context reasoning.",
|
| 109 |
+
"params_b": 4.0
|
| 110 |
},
|
| 111 |
|
| 112 |
"Gemma-3-4B-IT": {
|
| 113 |
"repo_id": "unsloth/gemma-3-4b-it",
|
| 114 |
+
"description": "Gemma-3-4B-IT",
|
| 115 |
+
"params_b": 4.0
|
| 116 |
},
|
| 117 |
"MiniCPM3-4B": {
|
| 118 |
"repo_id": "openbmb/MiniCPM3-4B",
|
| 119 |
+
"description": "MiniCPM3-4B",
|
| 120 |
+
"params_b": 4.0
|
| 121 |
},
|
| 122 |
"Gemma-3n-E4B": {
|
| 123 |
"repo_id": "google/gemma-3n-E4B",
|
| 124 |
+
"description": "Gemma 3n base model with effective 4 B parameters (≈3 GB VRAM)",
|
| 125 |
+
"params_b": 4.0
|
| 126 |
},
|
| 127 |
"SmallThinker-4BA0.6B-Instruct": {
|
| 128 |
"repo_id": "PowerInfer/SmallThinker-4BA0.6B-Instruct",
|
| 129 |
+
"description": "SmallThinker 4 B backbone with 0.6 B activated parameters, instruction‑tuned",
|
| 130 |
+
"params_b": 4.0
|
| 131 |
},
|
| 132 |
|
| 133 |
# ~3B
|
|
|
|
| 137 |
# },
|
| 138 |
"Qwen2.5-Taiwan-3B-Reason-GRPO": {
|
| 139 |
"repo_id": "benchang1110/Qwen2.5-Taiwan-3B-Reason-GRPO",
|
| 140 |
+
"description": "Qwen2.5-Taiwan model with 3 B parameters, Reason-GRPO fine-tuned",
|
| 141 |
+
"params_b": 3.0
|
| 142 |
},
|
| 143 |
"Llama-3.2-Taiwan-3B-Instruct": {
|
| 144 |
"repo_id": "lianghsun/Llama-3.2-Taiwan-3B-Instruct",
|
| 145 |
+
"description": "Llama-3.2-Taiwan-3B-Instruct",
|
| 146 |
+
"params_b": 3.0
|
| 147 |
},
|
| 148 |
"Qwen2.5-3B-Instruct": {
|
| 149 |
"repo_id": "Qwen/Qwen2.5-3B-Instruct",
|
| 150 |
+
"description": "Qwen2.5-3B-Instruct",
|
| 151 |
+
"params_b": 3.0
|
| 152 |
},
|
| 153 |
"Qwen2.5-Omni-3B": {
|
| 154 |
"repo_id": "Qwen/Qwen2.5-Omni-3B",
|
| 155 |
+
"description": "Qwen2.5-Omni-3B",
|
| 156 |
+
"params_b": 3.0
|
| 157 |
},
|
| 158 |
"Granite-4.0-Micro": {
|
| 159 |
"repo_id": "ibm-granite/granite-4.0-micro",
|
| 160 |
+
"description": "A 3B-parameter long-context instruct model from IBM, finetuned for enhanced instruction following and tool-calling. Supports 12 languages including English, Chinese, Arabic, and Japanese. Built on a dense Transformer with GQA, RoPE, SwiGLU, and 128K context length. Trained using SFT, RL alignment, and model merging techniques for enterprise applications.",
|
| 161 |
+
"params_b": 3.0
|
| 162 |
},
|
| 163 |
|
| 164 |
# 2.6B
|
| 165 |
"LFM2-2.6B": {
|
| 166 |
"repo_id": "LiquidAI/LFM2-2.6B",
|
| 167 |
+
"description": "The 2.6B parameter model in the LFM2 series, it outperforms models in the 3B+ class and features a hybrid architecture for faster inference.",
|
| 168 |
+
"params_b": 2.6
|
| 169 |
},
|
| 170 |
|
| 171 |
# 1.7B
|
| 172 |
"Qwen3-1.7B": {
|
| 173 |
"repo_id": "Qwen/Qwen3-1.7B",
|
| 174 |
+
"description": "Dense causal language model with 1.7 B total parameters (1.4 B non-embedding), 28 layers, 16 query heads & 8 KV heads, 32 768-token context, stronger reasoning vs. 0.6 B variant, dual-mode inference, instruction following across 100+ languages.",
|
| 175 |
+
"params_b": 1.7
|
| 176 |
},
|
| 177 |
|
| 178 |
# ~2B (effective)
|
| 179 |
"Gemma-3n-E2B": {
|
| 180 |
"repo_id": "google/gemma-3n-E2B",
|
| 181 |
+
"description": "Gemma 3n base model with effective 2 B parameters (≈2 GB VRAM)",
|
| 182 |
+
"params_b": 2.0
|
| 183 |
},
|
| 184 |
|
| 185 |
# 1.5B
|
| 186 |
"Nemotron-Research-Reasoning-Qwen-1.5B": {
|
| 187 |
"repo_id": "nvidia/Nemotron-Research-Reasoning-Qwen-1.5B",
|
| 188 |
+
"description": "Nemotron-Research-Reasoning-Qwen-1.5B",
|
| 189 |
+
"params_b": 1.5
|
| 190 |
},
|
| 191 |
"Falcon-H1-1.5B-Instruct": {
|
| 192 |
"repo_id": "tiiuae/Falcon-H1-1.5B-Instruct",
|
| 193 |
+
"description": "Falcon‑H1 model with 1.5 B parameters, instruction‑tuned",
|
| 194 |
+
"params_b": 1.5
|
| 195 |
},
|
| 196 |
"Qwen2.5-Taiwan-1.5B-Instruct": {
|
| 197 |
"repo_id": "benchang1110/Qwen2.5-Taiwan-1.5B-Instruct",
|
| 198 |
+
"description": "Qwen2.5-Taiwan-1.5B-Instruct",
|
| 199 |
+
"params_b": 1.5
|
| 200 |
},
|
| 201 |
|
| 202 |
# 1.2B
|
| 203 |
"LFM2-1.2B": {
|
| 204 |
"repo_id": "LiquidAI/LFM2-1.2B",
|
| 205 |
+
"description": "A 1.2B parameter hybrid language model from Liquid AI, designed for efficient on-device and edge AI deployment, outperforming larger models like Llama-2-7b-hf in specific tasks.",
|
| 206 |
+
"params_b": 1.2
|
| 207 |
},
|
| 208 |
|
| 209 |
# 1.1B
|
| 210 |
"Taiwan-ELM-1_1B-Instruct": {
|
| 211 |
"repo_id": "liswei/Taiwan-ELM-1_1B-Instruct",
|
| 212 |
+
"description": "Taiwan-ELM-1_1B-Instruct",
|
| 213 |
+
"params_b": 1.1
|
| 214 |
},
|
| 215 |
|
| 216 |
# 1B
|
| 217 |
"Llama-3.2-Taiwan-1B": {
|
| 218 |
"repo_id": "lianghsun/Llama-3.2-Taiwan-1B",
|
| 219 |
+
"description": "Llama-3.2-Taiwan base model with 1 B parameters",
|
| 220 |
+
"params_b": 1.0
|
| 221 |
},
|
| 222 |
|
| 223 |
# 700M
|
| 224 |
"LFM2-700M": {
|
| 225 |
"repo_id": "LiquidAI/LFM2-700M",
|
| 226 |
+
"description": "A 700M parameter model from the LFM2 family, designed for high efficiency on edge devices with a hybrid architecture of multiplicative gates and short convolutions.",
|
| 227 |
+
"params_b": 0.7
|
| 228 |
},
|
| 229 |
|
| 230 |
# 600M
|
| 231 |
"Qwen3-0.6B": {
|
| 232 |
"repo_id": "Qwen/Qwen3-0.6B",
|
| 233 |
+
"description": "Dense causal language model with 0.6 B total parameters (0.44 B non-embedding), 28 transformer layers, 16 query heads & 8 KV heads, native 32 768-token context window, dual-mode generation, full multilingual & agentic capabilities.",
|
| 234 |
+
"params_b": 0.6
|
| 235 |
},
|
| 236 |
"Qwen3-0.6B-Taiwan": {
|
| 237 |
"repo_id": "ShengweiPeng/Qwen3-0.6B-Taiwan",
|
| 238 |
+
"description": "Qwen3-Taiwan model with 0.6 B parameters",
|
| 239 |
+
"params_b": 0.6
|
| 240 |
},
|
| 241 |
|
| 242 |
# 500M
|
| 243 |
"Qwen2.5-0.5B-Taiwan-Instruct": {
|
| 244 |
"repo_id": "ShengweiPeng/Qwen2.5-0.5B-Taiwan-Instruct",
|
| 245 |
+
"description": "Qwen2.5-Taiwan model with 0.5 B parameters, instruction-tuned",
|
| 246 |
+
"params_b": 0.5
|
| 247 |
},
|
| 248 |
|
| 249 |
# 360M
|
| 250 |
"SmolLM2-360M-Instruct": {
|
| 251 |
"repo_id": "HuggingFaceTB/SmolLM2-360M-Instruct",
|
| 252 |
+
"description": "Original SmolLM2‑360M Instruct",
|
| 253 |
+
"params_b": 0.36
|
| 254 |
},
|
| 255 |
"SmolLM2-360M-Instruct-TaiwanChat": {
|
| 256 |
"repo_id": "Luigi/SmolLM2-360M-Instruct-TaiwanChat",
|
| 257 |
+
"description": "SmolLM2‑360M Instruct fine-tuned on TaiwanChat",
|
| 258 |
+
"params_b": 0.36
|
| 259 |
},
|
| 260 |
|
| 261 |
# 350M
|
| 262 |
"LFM2-350M": {
|
| 263 |
"repo_id": "LiquidAI/LFM2-350M",
|
| 264 |
+
"description": "A compact 350M parameter hybrid model optimized for edge and on-device applications, offering significantly faster training and inference speeds compared to models like Qwen3.",
|
| 265 |
+
"params_b": 0.35
|
| 266 |
},
|
| 267 |
|
| 268 |
# 270M
|
| 269 |
"parser_model_ner_gemma_v0.1": {
|
| 270 |
"repo_id": "myfi/parser_model_ner_gemma_v0.1",
|
| 271 |
+
"description": "A lightweight named‑entity‑like (NER) parser fine‑tuned from Google’s **Gemma‑3‑270M** model. The base Gemma‑3‑270M is a 270 M‑parameter, hyper‑efficient LLM designed for on‑device inference, supporting >140 languages, a 128 k‑token context window, and instruction‑following capabilities [2][7]. This variant is further trained on standard NER corpora (e.g., CoNLL‑2003, OntoNotes) to extract PERSON, ORG, LOC, and MISC entities with high precision while keeping the memory footprint low (≈240 MB VRAM in BF16 quantized form) [1]. It is released under the Apache‑2.0 license and can be used for fast, cost‑effective entity extraction in low‑resource environments.",
|
| 272 |
+
"params_b": 0.27
|
| 273 |
},
|
| 274 |
"Gemma-3-Taiwan-270M-it": {
|
| 275 |
"repo_id": "lianghsun/Gemma-3-Taiwan-270M-it",
|
| 276 |
+
"description": "google/gemma-3-270m-it fintuned on Taiwan Chinese dataset",
|
| 277 |
+
"params_b": 0.27
|
| 278 |
},
|
| 279 |
"gemma-3-270m-it": {
|
| 280 |
"repo_id": "google/gemma-3-270m-it",
|
| 281 |
"description": "Gemma‑3‑270M‑IT is a compact, 270‑million‑parameter language model fine‑tuned for Italian, offering fast and efficient on‑device text generation and comprehension in the Italian language.",
|
| 282 |
+
"params_b": 0.27
|
| 283 |
},
|
| 284 |
"Taiwan-ELM-270M-Instruct": {
|
| 285 |
"repo_id": "liswei/Taiwan-ELM-270M-Instruct",
|
| 286 |
+
"description": "Taiwan-ELM-270M-Instruct",
|
| 287 |
+
"params_b": 0.27
|
| 288 |
},
|
| 289 |
|
| 290 |
# 135M
|
| 291 |
"SmolLM2-135M-multilingual-base": {
|
| 292 |
"repo_id": "agentlans/SmolLM2-135M-multilingual-base",
|
| 293 |
+
"description": "SmolLM2-135M-multilingual-base",
|
| 294 |
+
"params_b": 0.135
|
| 295 |
},
|
| 296 |
"SmolLM-135M-Taiwan-Instruct-v1.0": {
|
| 297 |
"repo_id": "benchang1110/SmolLM-135M-Taiwan-Instruct-v1.0",
|
| 298 |
+
"description": "135-million-parameter F32 safetensors instruction-finetuned variant of SmolLM-135M-Taiwan, trained on the 416 k-example ChatTaiwan dataset for Traditional Chinese conversational and instruction-following tasks",
|
| 299 |
+
"params_b": 0.135
|
| 300 |
},
|
| 301 |
"SmolLM2_135M_Grpo_Gsm8k": {
|
| 302 |
"repo_id": "prithivMLmods/SmolLM2_135M_Grpo_Gsm8k",
|
| 303 |
+
"description": "SmolLM2_135M_Grpo_Gsm8k",
|
| 304 |
+
"params_b": 0.135
|
| 305 |
},
|
| 306 |
"SmolLM2-135M-Instruct": {
|
| 307 |
"repo_id": "HuggingFaceTB/SmolLM2-135M-Instruct",
|
| 308 |
+
"description": "Original SmolLM2‑135M Instruct",
|
| 309 |
+
"params_b": 0.135
|
| 310 |
},
|
| 311 |
"SmolLM2-135M-Instruct-TaiwanChat": {
|
| 312 |
"repo_id": "Luigi/SmolLM2-135M-Instruct-TaiwanChat",
|
| 313 |
+
"description": "SmolLM2‑135M Instruct fine-tuned on TaiwanChat",
|
| 314 |
+
"params_b": 0.135
|
| 315 |
},
|
| 316 |
}
|
| 317 |
|
|
|
|
| 385 |
return prompt
|
| 386 |
|
| 387 |
def get_duration(user_msg, chat_history, system_prompt, enable_search, max_results, max_chars, model_name, max_tokens, temperature, top_k, top_p, repeat_penalty, search_timeout):
|
| 388 |
+
# Get model size from the MODELS dict (more reliable than string parsing)
|
| 389 |
+
model_size = MODELS[model_name].get("params_b", 4.0) # Default to 4B if not found
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 390 |
|
| 391 |
# Only use AOT for models >= 2B parameters
|
| 392 |
use_aot = model_size >= 2
|