Spaces:
Running
Running
provide more models, secure memory usage
Browse files
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: pink
|
| 5 |
colorTo: purple
|
| 6 |
sdk: streamlit
|
|
@@ -8,7 +8,28 @@ sdk_version: 1.44.1
|
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
| 11 |
-
short_description: Run Qwen2.5-
|
| 12 |
---
|
| 13 |
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Multi-GGUF LLM Inference
|
| 3 |
+
emoji: 🧠
|
| 4 |
colorFrom: pink
|
| 5 |
colorTo: purple
|
| 6 |
sdk: streamlit
|
|
|
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
| 11 |
+
short_description: Run multiple GGUF models (Qwen2.5, Gemma-3, Phi-4) via llama.cpp
|
| 12 |
---
|
| 13 |
|
| 14 |
+
This Streamlit app lets you run **chat-based inference** on different GGUF models with `llama.cpp` and `llama-cpp-python`.
|
| 15 |
+
|
| 16 |
+
### 🔄 Supported Models:
|
| 17 |
+
- `Qwen/Qwen2.5-7B-Instruct-GGUF` → `qwen2.5-7b-instruct-q2_k.gguf`
|
| 18 |
+
- `unsloth/gemma-3-4b-it-GGUF` → `gemma-3-4b-it-Q5_K_M.gguf`
|
| 19 |
+
- `unsloth/Phi-4-mini-instruct-GGUF` → `Phi-4-mini-instruct-Q5_K_M.gguf`
|
| 20 |
+
|
| 21 |
+
### ⚙️ Features:
|
| 22 |
+
- Model selection in sidebar
|
| 23 |
+
- Custom system prompt and generation parameters
|
| 24 |
+
- Chat-style UI with streaming responses
|
| 25 |
+
|
| 26 |
+
### 🧠 Memory-Safe Design (for HuggingFace Spaces):
|
| 27 |
+
- Only **one model is loaded at a time** (no persistent memory bloat)
|
| 28 |
+
- Uses **manual unloading and `gc.collect()`** to free memory when switching
|
| 29 |
+
- Reduces `n_ctx` context length to stay under 16 GB RAM limit
|
| 30 |
+
- Automatically downloads models only when needed
|
| 31 |
+
- Trims history to the **last 8 user-assistant turns** to avoid context overflow
|
| 32 |
+
|
| 33 |
+
Perfect for deploying multi-GGUF chat models on **free-tier HuggingFace Spaces**!
|
| 34 |
+
|
| 35 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
|
@@ -1,19 +1,66 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
from llama_cpp import Llama
|
| 3 |
from huggingface_hub import hf_hub_download
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
n_threads=2,
|
| 18 |
n_threads_batch=2,
|
| 19 |
n_batch=4,
|
|
@@ -22,43 +69,34 @@ def load_model():
|
|
| 22 |
use_mmap=True,
|
| 23 |
verbose=False,
|
| 24 |
)
|
|
|
|
| 25 |
|
| 26 |
-
llm =
|
| 27 |
|
| 28 |
-
#
|
| 29 |
if "chat_history" not in st.session_state:
|
| 30 |
st.session_state.chat_history = []
|
| 31 |
|
| 32 |
-
st.title("🧠
|
| 33 |
-
st.caption("Powered by `llama.cpp`
|
| 34 |
-
|
| 35 |
-
with st.sidebar:
|
| 36 |
-
st.header("⚙️ Settings")
|
| 37 |
-
system_prompt = st.text_area("System Prompt", value="You are a helpful assistant.", height=80)
|
| 38 |
-
max_tokens = st.slider("Max tokens", 64, 2048, 512, step=32)
|
| 39 |
-
temperature = st.slider("Temperature", 0.1, 2.0, 0.7)
|
| 40 |
-
top_k = st.slider("Top-K", 1, 100, 40)
|
| 41 |
-
top_p = st.slider("Top-P", 0.1, 1.0, 0.95)
|
| 42 |
-
repeat_penalty = st.slider("Repetition Penalty", 1.0, 2.0, 1.1)
|
| 43 |
|
| 44 |
-
# Input box
|
| 45 |
user_input = st.chat_input("Ask something...")
|
| 46 |
|
| 47 |
if user_input:
|
| 48 |
-
# Add user message to chat
|
| 49 |
st.session_state.chat_history.append({"role": "user", "content": user_input})
|
| 50 |
|
| 51 |
-
# Display user message
|
| 52 |
with st.chat_message("user"):
|
| 53 |
st.markdown(user_input)
|
| 54 |
|
| 55 |
-
#
|
| 56 |
-
|
|
|
|
|
|
|
| 57 |
|
| 58 |
-
# Stream response
|
| 59 |
with st.chat_message("assistant"):
|
| 60 |
full_response = ""
|
| 61 |
response_area = st.empty()
|
|
|
|
| 62 |
stream = llm.create_chat_completion(
|
| 63 |
messages=messages,
|
| 64 |
max_tokens=max_tokens,
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
from llama_cpp import Llama
|
| 3 |
from huggingface_hub import hf_hub_download
|
| 4 |
+
import os
|
| 5 |
+
import gc
|
| 6 |
|
| 7 |
+
# Available models
|
| 8 |
+
MODELS = {
|
| 9 |
+
"Qwen2.5-7B-Instruct (Q2_K)": {
|
| 10 |
+
"repo_id": "Qwen/Qwen2.5-7B-Instruct-GGUF",
|
| 11 |
+
"filename": "qwen2.5-7b-instruct-q2_k.gguf",
|
| 12 |
+
"description": "Qwen2.5-7B Instruct (Q2_K)"
|
| 13 |
+
},
|
| 14 |
+
"Gemma-3-4B-IT (Q5_K_M)": {
|
| 15 |
+
"repo_id": "unsloth/gemma-3-4b-it-GGUF",
|
| 16 |
+
"filename": "gemma-3-4b-it-Q5_K_M.gguf",
|
| 17 |
+
"description": "Gemma 3 4B IT (Q5_K_M)"
|
| 18 |
+
},
|
| 19 |
+
"Phi-4-mini-Instruct (Q5_K_M)": {
|
| 20 |
+
"repo_id": "unsloth/Phi-4-mini-instruct-GGUF",
|
| 21 |
+
"filename": "Phi-4-mini-instruct-Q5_K_M.gguf",
|
| 22 |
+
"description": "Phi-4 Mini Instruct (Q5_K_M)"
|
| 23 |
+
},
|
| 24 |
+
}
|
| 25 |
+
|
| 26 |
+
with st.sidebar:
|
| 27 |
+
st.header("⚙️ Settings")
|
| 28 |
+
selected_model_name = st.selectbox("Select Model", list(MODELS.keys()))
|
| 29 |
+
system_prompt = st.text_area("System Prompt", value="You are a helpful assistant.", height=80)
|
| 30 |
+
max_tokens = st.slider("Max tokens", 64, 2048, 512, step=32)
|
| 31 |
+
temperature = st.slider("Temperature", 0.1, 2.0, 0.7)
|
| 32 |
+
top_k = st.slider("Top-K", 1, 100, 40)
|
| 33 |
+
top_p = st.slider("Top-P", 0.1, 1.0, 0.95)
|
| 34 |
+
repeat_penalty = st.slider("Repetition Penalty", 1.0, 2.0, 1.1)
|
| 35 |
+
|
| 36 |
+
# Model info
|
| 37 |
+
selected_model = MODELS[selected_model_name]
|
| 38 |
+
model_path = os.path.join("models", selected_model["filename"])
|
| 39 |
+
|
| 40 |
+
# Initialize model cache state
|
| 41 |
+
if "model_name" not in st.session_state:
|
| 42 |
+
st.session_state.model_name = None
|
| 43 |
+
if "llm" not in st.session_state:
|
| 44 |
+
st.session_state.llm = None
|
| 45 |
+
|
| 46 |
+
# Download model if needed
|
| 47 |
+
if not os.path.exists(model_path):
|
| 48 |
+
hf_hub_download(
|
| 49 |
+
repo_id=selected_model["repo_id"],
|
| 50 |
+
filename=selected_model["filename"],
|
| 51 |
+
local_dir="./models",
|
| 52 |
+
local_dir_use_symlinks=False,
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
# Load model only if it changed
|
| 56 |
+
if st.session_state.model_name != selected_model_name:
|
| 57 |
+
if st.session_state.llm is not None:
|
| 58 |
+
# Clean up old model to free memory
|
| 59 |
+
del st.session_state.llm
|
| 60 |
+
gc.collect()
|
| 61 |
+
st.session_state.llm = Llama(
|
| 62 |
+
model_path=model_path,
|
| 63 |
+
n_ctx=1024, # Reduced for RAM safety
|
| 64 |
n_threads=2,
|
| 65 |
n_threads_batch=2,
|
| 66 |
n_batch=4,
|
|
|
|
| 69 |
use_mmap=True,
|
| 70 |
verbose=False,
|
| 71 |
)
|
| 72 |
+
st.session_state.model_name = selected_model_name
|
| 73 |
|
| 74 |
+
llm = st.session_state.llm
|
| 75 |
|
| 76 |
+
# Chat history state
|
| 77 |
if "chat_history" not in st.session_state:
|
| 78 |
st.session_state.chat_history = []
|
| 79 |
|
| 80 |
+
st.title(f"🧠 {selected_model['description']} (Streamlit + GGUF)")
|
| 81 |
+
st.caption(f"Powered by `llama.cpp` | Model: {selected_model['filename']}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
|
|
|
| 83 |
user_input = st.chat_input("Ask something...")
|
| 84 |
|
| 85 |
if user_input:
|
|
|
|
| 86 |
st.session_state.chat_history.append({"role": "user", "content": user_input})
|
| 87 |
|
|
|
|
| 88 |
with st.chat_message("user"):
|
| 89 |
st.markdown(user_input)
|
| 90 |
|
| 91 |
+
# Trim conversation history to max 8 turns (user+assistant)
|
| 92 |
+
MAX_TURNS = 8
|
| 93 |
+
trimmed_history = st.session_state.chat_history[-MAX_TURNS * 2:]
|
| 94 |
+
messages = [{"role": "system", "content": system_prompt}] + trimmed_history
|
| 95 |
|
|
|
|
| 96 |
with st.chat_message("assistant"):
|
| 97 |
full_response = ""
|
| 98 |
response_area = st.empty()
|
| 99 |
+
|
| 100 |
stream = llm.create_chat_completion(
|
| 101 |
messages=messages,
|
| 102 |
max_tokens=max_tokens,
|