Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -26,11 +26,20 @@ cancel_event = threading.Event()
|
|
| 26 |
# Torch-Compatible Model Definitions with Adjusted Descriptions
|
| 27 |
# ------------------------------
|
| 28 |
MODELS = {
|
| 29 |
-
#
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
"Qwen3-14B": {
|
| 35 |
"repo_id": "Qwen/Qwen3-14B",
|
| 36 |
"description": "Dense causal language model with 14.8 B total parameters (13.2 B non-embedding), 40 layers, 40 query heads & 8 KV heads, 32 768-token context (131 072 via YaRN), enhanced human preference alignment & advanced agent integration."
|
|
@@ -40,17 +49,34 @@ MODELS = {
|
|
| 40 |
"description": "FP8-quantized version of Qwen3-14B for efficient inference."
|
| 41 |
},
|
| 42 |
|
| 43 |
-
#
|
|
|
|
|
|
|
|
|
|
| 44 |
"Apriel-5B-Instruct": {
|
| 45 |
"repo_id": "ServiceNow-AI/Apriel-5B-Instruct",
|
| 46 |
"description": "A 5B-parameter instruction-tuned model from ServiceNow’s Apriel series, optimized for enterprise tasks and general-purpose instruction following."
|
| 47 |
},
|
| 48 |
|
| 49 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
"Qwen3-4B": {
|
| 51 |
"repo_id": "Qwen/Qwen3-4B",
|
| 52 |
"description": "Dense causal language model with 4.0 B total parameters (3.6 B non-embedding), 36 layers, 32 query heads & 8 KV heads, native 32 768-token context (extendable to 131 072 via YaRN), balanced mid-range capacity & long-context reasoning."
|
| 53 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
"Gemma-3-4B-IT": {
|
| 55 |
"repo_id": "unsloth/gemma-3-4b-it",
|
| 56 |
"description": "Gemma-3-4B-IT"
|
|
@@ -63,24 +89,12 @@ MODELS = {
|
|
| 63 |
"repo_id": "google/gemma-3n-E4B",
|
| 64 |
"description": "Gemma 3n base model with effective 4 B parameters (≈3 GB VRAM)"
|
| 65 |
},
|
| 66 |
-
"Phi-4-mini-Reasoning": {
|
| 67 |
-
"repo_id": "microsoft/Phi-4-mini-reasoning",
|
| 68 |
-
"description": "Phi-4-mini-Reasoning (4.3B parameters)"
|
| 69 |
-
},
|
| 70 |
-
"Phi-4-mini-Instruct": {
|
| 71 |
-
"repo_id": "microsoft/Phi-4-mini-instruct",
|
| 72 |
-
"description": "Phi-4-mini-Instruct (4.3B parameters)"
|
| 73 |
-
},
|
| 74 |
"SmallThinker-4BA0.6B-Instruct": {
|
| 75 |
"repo_id": "PowerInfer/SmallThinker-4BA0.6B-Instruct",
|
| 76 |
"description": "SmallThinker 4 B backbone with 0.6 B activated parameters, instruction‑tuned"
|
| 77 |
},
|
| 78 |
-
"Qwen3-4B-Instruct-2507": {
|
| 79 |
-
"repo_id": "Qwen/Qwen3-4B-Instruct-2507",
|
| 80 |
-
"description": "Updated non-thinking instruct variant of Qwen3-4B with 4.0B parameters, featuring significant improvements in instruction following, logical reasoning, multilingualism, and 256K long-context understanding. Strong performance across knowledge, coding, alignment, and agent benchmarks."
|
| 81 |
-
},
|
| 82 |
|
| 83 |
-
#
|
| 84 |
"AI21-Jamba-Reasoning-3B": {
|
| 85 |
"repo_id": "ai21labs/AI21-Jamba-Reasoning-3B",
|
| 86 |
"description": "A compact 3B hybrid Transformer–Mamba reasoning model with 256K context length, strong intelligence benchmark scores (61% MMLU-Pro, 52% IFBench), and efficient inference suitable for edge and datacenter use. Outperforms Gemma-3 4B and Llama-3.2 3B despite smaller size."
|
|
@@ -106,23 +120,25 @@ MODELS = {
|
|
| 106 |
"description": "A 3B-parameter long-context instruct model from IBM, finetuned for enhanced instruction following and tool-calling. Supports 12 languages including English, Chinese, Arabic, and Japanese. Built on a dense Transformer with GQA, RoPE, SwiGLU, and 128K context length. Trained using SFT, RL alignment, and model merging techniques for enterprise applications."
|
| 107 |
},
|
| 108 |
|
| 109 |
-
#
|
| 110 |
"LFM2-2.6B": {
|
| 111 |
"repo_id": "LiquidAI/LFM2-2.6B",
|
| 112 |
"description": "The 2.6B parameter model in the LFM2 series, it outperforms models in the 3B+ class and features a hybrid architecture for faster inference."
|
| 113 |
},
|
| 114 |
|
| 115 |
-
#
|
| 116 |
"Qwen3-1.7B": {
|
| 117 |
"repo_id": "Qwen/Qwen3-1.7B",
|
| 118 |
"description": "Dense causal language model with 1.7 B total parameters (1.4 B non-embedding), 28 layers, 16 query heads & 8 KV heads, 32 768-token context, stronger reasoning vs. 0.6 B variant, dual-mode inference, instruction following across 100+ languages."
|
| 119 |
},
|
|
|
|
|
|
|
| 120 |
"Gemma-3n-E2B": {
|
| 121 |
"repo_id": "google/gemma-3n-E2B",
|
| 122 |
"description": "Gemma 3n base model with effective 2 B parameters (≈2 GB VRAM)"
|
| 123 |
},
|
| 124 |
|
| 125 |
-
#
|
| 126 |
"Nemotron-Research-Reasoning-Qwen-1.5B": {
|
| 127 |
"repo_id": "nvidia/Nemotron-Research-Reasoning-Qwen-1.5B",
|
| 128 |
"description": "Nemotron-Research-Reasoning-Qwen-1.5B"
|
|
@@ -135,24 +151,32 @@ MODELS = {
|
|
| 135 |
"repo_id": "benchang1110/Qwen2.5-Taiwan-1.5B-Instruct",
|
| 136 |
"description": "Qwen2.5-Taiwan-1.5B-Instruct"
|
| 137 |
},
|
|
|
|
|
|
|
| 138 |
"LFM2-1.2B": {
|
| 139 |
"repo_id": "LiquidAI/LFM2-1.2B",
|
| 140 |
"description": "A 1.2B parameter hybrid language model from Liquid AI, designed for efficient on-device and edge AI deployment, outperforming larger models like Llama-2-7b-hf in specific tasks."
|
| 141 |
},
|
|
|
|
|
|
|
| 142 |
"Taiwan-ELM-1_1B-Instruct": {
|
| 143 |
"repo_id": "liswei/Taiwan-ELM-1_1B-Instruct",
|
| 144 |
"description": "Taiwan-ELM-1_1B-Instruct"
|
| 145 |
},
|
|
|
|
|
|
|
| 146 |
"Llama-3.2-Taiwan-1B": {
|
| 147 |
"repo_id": "lianghsun/Llama-3.2-Taiwan-1B",
|
| 148 |
"description": "Llama-3.2-Taiwan base model with 1 B parameters"
|
| 149 |
},
|
| 150 |
|
| 151 |
-
#
|
| 152 |
"LFM2-700M": {
|
| 153 |
"repo_id": "LiquidAI/LFM2-700M",
|
| 154 |
"description": "A 700M parameter model from the LFM2 family, designed for high efficiency on edge devices with a hybrid architecture of multiplicative gates and short convolutions."
|
| 155 |
},
|
|
|
|
|
|
|
| 156 |
"Qwen3-0.6B": {
|
| 157 |
"repo_id": "Qwen/Qwen3-0.6B",
|
| 158 |
"description": "Dense causal language model with 0.6 B total parameters (0.44 B non-embedding), 28 transformer layers, 16 query heads & 8 KV heads, native 32 768-token context window, dual-mode generation, full multilingual & agentic capabilities."
|
|
@@ -161,10 +185,14 @@ MODELS = {
|
|
| 161 |
"repo_id": "ShengweiPeng/Qwen3-0.6B-Taiwan",
|
| 162 |
"description": "Qwen3-Taiwan model with 0.6 B parameters"
|
| 163 |
},
|
|
|
|
|
|
|
| 164 |
"Qwen2.5-0.5B-Taiwan-Instruct": {
|
| 165 |
"repo_id": "ShengweiPeng/Qwen2.5-0.5B-Taiwan-Instruct",
|
| 166 |
"description": "Qwen2.5-Taiwan model with 0.5 B parameters, instruction-tuned"
|
| 167 |
},
|
|
|
|
|
|
|
| 168 |
"SmolLM2-360M-Instruct": {
|
| 169 |
"repo_id": "HuggingFaceTB/SmolLM2-360M-Instruct",
|
| 170 |
"description": "Original SmolLM2‑360M Instruct"
|
|
@@ -173,12 +201,14 @@ MODELS = {
|
|
| 173 |
"repo_id": "Luigi/SmolLM2-360M-Instruct-TaiwanChat",
|
| 174 |
"description": "SmolLM2‑360M Instruct fine-tuned on TaiwanChat"
|
| 175 |
},
|
|
|
|
|
|
|
| 176 |
"LFM2-350M": {
|
| 177 |
"repo_id": "LiquidAI/LFM2-350M",
|
| 178 |
"description": "A compact 350M parameter hybrid model optimized for edge and on-device applications, offering significantly faster training and inference speeds compared to models like Qwen3."
|
| 179 |
},
|
| 180 |
|
| 181 |
-
#
|
| 182 |
"parser_model_ner_gemma_v0.1": {
|
| 183 |
"repo_id": "myfi/parser_model_ner_gemma_v0.1",
|
| 184 |
"description": "A lightweight named‑entity‑like (NER) parser fine‑tuned from Google’s **Gemma‑3‑270M** model. The base Gemma‑3‑270M is a 270 M‑parameter, hyper‑efficient LLM designed for on‑device inference, supporting >140 languages, a 128 k‑token context window, and instruction‑following capabilities [2][7]. This variant is further trained on standard NER corpora (e.g., CoNLL‑2003, OntoNotes) to extract PERSON, ORG, LOC, and MISC entities with high precision while keeping the memory footprint low (≈240 MB VRAM in BF16 quantized form) [1]. It is released under the Apache‑2.0 license and can be used for fast, cost‑effective entity extraction in low‑resource environments."
|
|
@@ -196,7 +226,7 @@ MODELS = {
|
|
| 196 |
"description": "Taiwan-ELM-270M-Instruct"
|
| 197 |
},
|
| 198 |
|
| 199 |
-
#
|
| 200 |
"SmolLM2-135M-multilingual-base": {
|
| 201 |
"repo_id": "agentlans/SmolLM2-135M-multilingual-base",
|
| 202 |
"description": "SmolLM2-135M-multilingual-base"
|
|
|
|
| 26 |
# Torch-Compatible Model Definitions with Adjusted Descriptions
|
| 27 |
# ------------------------------
|
| 28 |
MODELS = {
|
| 29 |
+
# ~30.5B total parameters (MoE: 3.3B activated)
|
| 30 |
+
"Qwen3-30B-A3B-Thinking-2507-FP8": {
|
| 31 |
+
"repo_id": "Qwen/Qwen3-30B-A3B-Thinking-2507-FP8",
|
| 32 |
+
"description": "FP8-quantized MoE model with 30.5B total parameters (3.3B activated), 128 experts (8 activated), 48 layers, and native 262,144-token context. Optimized for complex reasoning tasks with enhanced thinking capabilities in mathematics, coding, science, and agent benchmarks. Supports only thinking mode; includes automatic reasoning delimiters."
|
| 33 |
+
},
|
| 34 |
+
"Qwen3-30B-A3B-Instruct-2507-FP8": {
|
| 35 |
+
"repo_id": "Qwen/Qwen3-30B-A3B-Instruct-2507-FP8",
|
| 36 |
+
"description": "FP8-quantized instruct-tuned variant of Qwen3-30B-A3B (30.5B total params, 3.3B activated), featuring strong general capabilities in instruction following, tool usage, text generation, and 256K long-context understanding. Ideal for agentic and multi-turn dialogue applications."
|
| 37 |
+
},
|
| 38 |
+
|
| 39 |
+
# ~235B total parameters (MoE: 22B activated) — included for reference if added later
|
| 40 |
+
# "Qwen3-235B-A22B-Thinking": { ... },
|
| 41 |
+
|
| 42 |
+
# 14.8B total parameters
|
| 43 |
"Qwen3-14B": {
|
| 44 |
"repo_id": "Qwen/Qwen3-14B",
|
| 45 |
"description": "Dense causal language model with 14.8 B total parameters (13.2 B non-embedding), 40 layers, 40 query heads & 8 KV heads, 32 768-token context (131 072 via YaRN), enhanced human preference alignment & advanced agent integration."
|
|
|
|
| 49 |
"description": "FP8-quantized version of Qwen3-14B for efficient inference."
|
| 50 |
},
|
| 51 |
|
| 52 |
+
# ~15B (commented out in original, but larger than 14B)
|
| 53 |
+
# "Apriel-1.5-15b-Thinker": { ... },
|
| 54 |
+
|
| 55 |
+
# 5B
|
| 56 |
"Apriel-5B-Instruct": {
|
| 57 |
"repo_id": "ServiceNow-AI/Apriel-5B-Instruct",
|
| 58 |
"description": "A 5B-parameter instruction-tuned model from ServiceNow’s Apriel series, optimized for enterprise tasks and general-purpose instruction following."
|
| 59 |
},
|
| 60 |
|
| 61 |
+
# 4.3B
|
| 62 |
+
"Phi-4-mini-Reasoning": {
|
| 63 |
+
"repo_id": "microsoft/Phi-4-mini-reasoning",
|
| 64 |
+
"description": "Phi-4-mini-Reasoning (4.3B parameters)"
|
| 65 |
+
},
|
| 66 |
+
"Phi-4-mini-Instruct": {
|
| 67 |
+
"repo_id": "microsoft/Phi-4-mini-instruct",
|
| 68 |
+
"description": "Phi-4-mini-Instruct (4.3B parameters)"
|
| 69 |
+
},
|
| 70 |
+
|
| 71 |
+
# 4.0B
|
| 72 |
"Qwen3-4B": {
|
| 73 |
"repo_id": "Qwen/Qwen3-4B",
|
| 74 |
"description": "Dense causal language model with 4.0 B total parameters (3.6 B non-embedding), 36 layers, 32 query heads & 8 KV heads, native 32 768-token context (extendable to 131 072 via YaRN), balanced mid-range capacity & long-context reasoning."
|
| 75 |
},
|
| 76 |
+
"Qwen3-4B-Instruct-2507": {
|
| 77 |
+
"repo_id": "Qwen/Qwen3-4B-Instruct-2507",
|
| 78 |
+
"description": "Updated non-thinking instruct variant of Qwen3-4B with 4.0B parameters, featuring significant improvements in instruction following, logical reasoning, multilingualism, and 256K long-context understanding. Strong performance across knowledge, coding, alignment, and agent benchmarks."
|
| 79 |
+
},
|
| 80 |
"Gemma-3-4B-IT": {
|
| 81 |
"repo_id": "unsloth/gemma-3-4b-it",
|
| 82 |
"description": "Gemma-3-4B-IT"
|
|
|
|
| 89 |
"repo_id": "google/gemma-3n-E4B",
|
| 90 |
"description": "Gemma 3n base model with effective 4 B parameters (≈3 GB VRAM)"
|
| 91 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
"SmallThinker-4BA0.6B-Instruct": {
|
| 93 |
"repo_id": "PowerInfer/SmallThinker-4BA0.6B-Instruct",
|
| 94 |
"description": "SmallThinker 4 B backbone with 0.6 B activated parameters, instruction‑tuned"
|
| 95 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
+
# ~3B
|
| 98 |
"AI21-Jamba-Reasoning-3B": {
|
| 99 |
"repo_id": "ai21labs/AI21-Jamba-Reasoning-3B",
|
| 100 |
"description": "A compact 3B hybrid Transformer–Mamba reasoning model with 256K context length, strong intelligence benchmark scores (61% MMLU-Pro, 52% IFBench), and efficient inference suitable for edge and datacenter use. Outperforms Gemma-3 4B and Llama-3.2 3B despite smaller size."
|
|
|
|
| 120 |
"description": "A 3B-parameter long-context instruct model from IBM, finetuned for enhanced instruction following and tool-calling. Supports 12 languages including English, Chinese, Arabic, and Japanese. Built on a dense Transformer with GQA, RoPE, SwiGLU, and 128K context length. Trained using SFT, RL alignment, and model merging techniques for enterprise applications."
|
| 121 |
},
|
| 122 |
|
| 123 |
+
# 2.6B
|
| 124 |
"LFM2-2.6B": {
|
| 125 |
"repo_id": "LiquidAI/LFM2-2.6B",
|
| 126 |
"description": "The 2.6B parameter model in the LFM2 series, it outperforms models in the 3B+ class and features a hybrid architecture for faster inference."
|
| 127 |
},
|
| 128 |
|
| 129 |
+
# 1.7B
|
| 130 |
"Qwen3-1.7B": {
|
| 131 |
"repo_id": "Qwen/Qwen3-1.7B",
|
| 132 |
"description": "Dense causal language model with 1.7 B total parameters (1.4 B non-embedding), 28 layers, 16 query heads & 8 KV heads, 32 768-token context, stronger reasoning vs. 0.6 B variant, dual-mode inference, instruction following across 100+ languages."
|
| 133 |
},
|
| 134 |
+
|
| 135 |
+
# ~2B (effective)
|
| 136 |
"Gemma-3n-E2B": {
|
| 137 |
"repo_id": "google/gemma-3n-E2B",
|
| 138 |
"description": "Gemma 3n base model with effective 2 B parameters (≈2 GB VRAM)"
|
| 139 |
},
|
| 140 |
|
| 141 |
+
# 1.5B
|
| 142 |
"Nemotron-Research-Reasoning-Qwen-1.5B": {
|
| 143 |
"repo_id": "nvidia/Nemotron-Research-Reasoning-Qwen-1.5B",
|
| 144 |
"description": "Nemotron-Research-Reasoning-Qwen-1.5B"
|
|
|
|
| 151 |
"repo_id": "benchang1110/Qwen2.5-Taiwan-1.5B-Instruct",
|
| 152 |
"description": "Qwen2.5-Taiwan-1.5B-Instruct"
|
| 153 |
},
|
| 154 |
+
|
| 155 |
+
# 1.2B
|
| 156 |
"LFM2-1.2B": {
|
| 157 |
"repo_id": "LiquidAI/LFM2-1.2B",
|
| 158 |
"description": "A 1.2B parameter hybrid language model from Liquid AI, designed for efficient on-device and edge AI deployment, outperforming larger models like Llama-2-7b-hf in specific tasks."
|
| 159 |
},
|
| 160 |
+
|
| 161 |
+
# 1.1B
|
| 162 |
"Taiwan-ELM-1_1B-Instruct": {
|
| 163 |
"repo_id": "liswei/Taiwan-ELM-1_1B-Instruct",
|
| 164 |
"description": "Taiwan-ELM-1_1B-Instruct"
|
| 165 |
},
|
| 166 |
+
|
| 167 |
+
# 1B
|
| 168 |
"Llama-3.2-Taiwan-1B": {
|
| 169 |
"repo_id": "lianghsun/Llama-3.2-Taiwan-1B",
|
| 170 |
"description": "Llama-3.2-Taiwan base model with 1 B parameters"
|
| 171 |
},
|
| 172 |
|
| 173 |
+
# 700M
|
| 174 |
"LFM2-700M": {
|
| 175 |
"repo_id": "LiquidAI/LFM2-700M",
|
| 176 |
"description": "A 700M parameter model from the LFM2 family, designed for high efficiency on edge devices with a hybrid architecture of multiplicative gates and short convolutions."
|
| 177 |
},
|
| 178 |
+
|
| 179 |
+
# 600M
|
| 180 |
"Qwen3-0.6B": {
|
| 181 |
"repo_id": "Qwen/Qwen3-0.6B",
|
| 182 |
"description": "Dense causal language model with 0.6 B total parameters (0.44 B non-embedding), 28 transformer layers, 16 query heads & 8 KV heads, native 32 768-token context window, dual-mode generation, full multilingual & agentic capabilities."
|
|
|
|
| 185 |
"repo_id": "ShengweiPeng/Qwen3-0.6B-Taiwan",
|
| 186 |
"description": "Qwen3-Taiwan model with 0.6 B parameters"
|
| 187 |
},
|
| 188 |
+
|
| 189 |
+
# 500M
|
| 190 |
"Qwen2.5-0.5B-Taiwan-Instruct": {
|
| 191 |
"repo_id": "ShengweiPeng/Qwen2.5-0.5B-Taiwan-Instruct",
|
| 192 |
"description": "Qwen2.5-Taiwan model with 0.5 B parameters, instruction-tuned"
|
| 193 |
},
|
| 194 |
+
|
| 195 |
+
# 360M
|
| 196 |
"SmolLM2-360M-Instruct": {
|
| 197 |
"repo_id": "HuggingFaceTB/SmolLM2-360M-Instruct",
|
| 198 |
"description": "Original SmolLM2‑360M Instruct"
|
|
|
|
| 201 |
"repo_id": "Luigi/SmolLM2-360M-Instruct-TaiwanChat",
|
| 202 |
"description": "SmolLM2‑360M Instruct fine-tuned on TaiwanChat"
|
| 203 |
},
|
| 204 |
+
|
| 205 |
+
# 350M
|
| 206 |
"LFM2-350M": {
|
| 207 |
"repo_id": "LiquidAI/LFM2-350M",
|
| 208 |
"description": "A compact 350M parameter hybrid model optimized for edge and on-device applications, offering significantly faster training and inference speeds compared to models like Qwen3."
|
| 209 |
},
|
| 210 |
|
| 211 |
+
# 270M
|
| 212 |
"parser_model_ner_gemma_v0.1": {
|
| 213 |
"repo_id": "myfi/parser_model_ner_gemma_v0.1",
|
| 214 |
"description": "A lightweight named‑entity‑like (NER) parser fine‑tuned from Google’s **Gemma‑3‑270M** model. The base Gemma‑3‑270M is a 270 M‑parameter, hyper‑efficient LLM designed for on‑device inference, supporting >140 languages, a 128 k‑token context window, and instruction‑following capabilities [2][7]. This variant is further trained on standard NER corpora (e.g., CoNLL‑2003, OntoNotes) to extract PERSON, ORG, LOC, and MISC entities with high precision while keeping the memory footprint low (≈240 MB VRAM in BF16 quantized form) [1]. It is released under the Apache‑2.0 license and can be used for fast, cost‑effective entity extraction in low‑resource environments."
|
|
|
|
| 226 |
"description": "Taiwan-ELM-270M-Instruct"
|
| 227 |
},
|
| 228 |
|
| 229 |
+
# 135M
|
| 230 |
"SmolLM2-135M-multilingual-base": {
|
| 231 |
"repo_id": "agentlans/SmolLM2-135M-multilingual-base",
|
| 232 |
"description": "SmolLM2-135M-multilingual-base"
|