Spaces:
Sleeping
Sleeping
File size: 13,669 Bytes
d28c36c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
"""
Évaluation complète MCP avec 9 modèles
Inclut les modèles spécialisés MCP et les modèles généraux
Test réaliste avec commandes RTS typiques
"""
import sys
import os
import json
import time
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
def test_model_comprehensive(model_path, model_name):
"""Test complet d'un modèle pour MCP"""
try:
from llama_cpp import Llama
print(f"🧪 Test de {model_name}...")
# Vérifier la taille du fichier
file_size = os.path.getsize(model_path) / (1024*1024)
print(f" 📏 Taille: {file_size:.0f} MB")
# Initialiser avec timeout plus long pour les gros modèles
llm = Llama(
model_path=model_path,
n_ctx=1024,
n_threads=1,
verbose=False,
n_gpu_layers=0 # Forcer CPU pour comparaison juste
)
# Commandes RTS réelles avec différents niveaux de complexité
test_commands = [
{
"name": "Commande simple",
"command": "show game state",
"expected": "get_game_state",
"difficulty": "easy"
},
{
"name": "Action avec coordonnées",
"command": "move infantry to 150,200",
"expected": "move_units",
"difficulty": "easy"
},
{
"name": "Attaque spécifique",
"command": "attack enemy tank at position 300,150",
"expected": "attack_unit",
"difficulty": "medium"
},
{
"name": "Construction",
"command": "build power plant near my base at 100,100",
"expected": "build_building",
"difficulty": "medium"
},
{
"name": "Commande complexe",
"command": "defend base with all available units",
"expected": "move_units",
"difficulty": "hard"
}
]
results = []
total_score = 0
total_time = 0
for test in test_commands:
prompt = f"""You are an AI assistant for an RTS game using MCP (Model Context Protocol).
Available tools:
- get_game_state()
- move_units(unit_ids, target_x, target_y)
- attack_unit(attacker_ids, target_id)
- build_building(building_type, position_x, position_y)
User command: "{test['command']}"
Respond with JSON only: {{"tool": "tool_name", "args": {{}}}}"""
start_time = time.time()
try:
response = llm(
prompt,
max_tokens=100,
temperature=0.1,
stop=["</s>", "<|im_end|>", "```"]
)
response_time = time.time() - start_time
# Extraire la réponse
try:
response_text = response['choices'][0]['text'].strip()
except:
# Fallback pour différents formats de réponse
if hasattr(response, 'get'):
response_text = response.get('text', str(response))
else:
response_text = str(response)
# Évaluer la réponse
score = evaluate_mcp_response(response_text, test)
total_score += score
total_time += response_time
print(f" ✅ {test['name']}: {score}/10 ({response_time:.2f}s)")
results.append({
'test': test['name'],
'difficulty': test['difficulty'],
'score': score,
'time': response_time,
'response': response_text[:100] + "..." if len(response_text) > 100 else response_text
})
except Exception as e:
print(f" ❌ {test['name']}: Erreur - {e}")
results.append({
'test': test['name'],
'difficulty': test['difficulty'],
'score': 0,
'time': 0,
'error': str(e)
})
avg_score = total_score / len(test_commands)
avg_time = total_time / len(test_commands)
print(f" 📊 Moyenne: {avg_score:.1f}/10 | Temps: {avg_time:.2f}s")
return {
'name': model_name,
'file_size_mb': file_size,
'avg_score': avg_score,
'avg_time': avg_time,
'efficiency': avg_score / avg_time if avg_time > 0 else 0,
'results': results
}
except Exception as e:
print(f"❌ Erreur critique avec {model_name}: {e}")
return {
'name': model_name,
'error': str(e),
'avg_score': 0,
'avg_time': 0,
'efficiency': 0
}
def evaluate_mcp_response(response, test):
"""Évaluation standardisée des réponses MCP"""
if not response or response.strip() == "":
return 0
score = 0
# JSON valide (3 points)
try:
json.loads(response)
score += 3
except:
# Chercher JSON dans le texte
import re
json_match = re.search(r'\{[^}]*\}', response)
if json_match:
try:
json.loads(json_match.group())
score += 1
except:
pass
# Outil correct (3 points)
expected_tool = test['expected']
if expected_tool in response:
score += 3
# Paramètres appropriés (2 points)
if test['difficulty'] == 'easy':
if '150,200' in response or 'game state' in response:
score += 2
elif test['difficulty'] == 'medium':
if any(coord in response for coord in ['300,150', '100,100']):
score += 2
elif test['difficulty'] == 'hard':
if 'units' in response and 'defend' in response:
score += 2
# Format correct (2 points)
if 'tool' in response and 'args' in response:
score += 2
return min(score, 10)
def main():
"""Évaluation complète de tous les modèles"""
print("🚀 ÉVALUATION COMPLÈTE MCP - 9 MODÈLES")
print("=" * 70)
print("Test avec modèles généraux et spécialisés MCP")
print("=" * 70)
# Tous les modèles à tester
models = [
# Modèles généraux (testés précédemment)
{
'name': 'Qwen2.5-0.5B',
'path': 'qwen2.5-0.5b-instruct-q4_0.gguf',
'type': 'general'
},
{
'name': 'Qwen3-0.6B',
'path': 'Qwen3-0.6B-Q8_0.gguf',
'type': 'general'
},
{
'name': 'Gemma-3-270M',
'path': 'gemma-3-270m-it-qat-Q8_0.gguf',
'type': 'general'
},
{
'name': 'Qwen3-1.7B',
'path': 'Qwen3-1.7B-Q4_0.gguf',
'type': 'general'
},
# Modèles spécialisés MCP
{
'name': 'MCP-Instruct-v1',
'path': 'mcp-instruct-v1.Q4_K_M.gguf',
'type': 'mcp_specialized'
},
{
'name': 'MCPR L-3B-Exa',
'path': 'mcprl-3b-exa.Q2_K.gguf',
'type': 'mcp_specialized'
},
{
'name': 'Gemma-3n-E2B-it',
'path': 'gemma-3n-E2B-it-UD-IQ2_XXS.gguf',
'type': 'mcp_specialized'
},
{
'name': 'Llama-Breeze2-3B',
'path': 'Llama-Breeze2-3B-Instruct-Text.Q2_K.gguf',
'type': 'general'
},
# Modèle spécialisé en code/structuré
{
'name': 'Qwen2.5-Coder-0.5B',
'path': 'qwen2.5-coder-0.5b-instruct-q4_0.gguf',
'type': 'code_specialized'
}
]
results = []
for model in models:
if os.path.exists(model['path']):
result = test_model_comprehensive(model['path'], model['name'])
result['type'] = model['type']
results.append(result)
print()
else:
print(f"❌ Modèle non trouvé: {model['path']}")
print()
# Analyse complète
print("=" * 70)
print("📊 RÉSULTATS COMPLETS")
print("=" * 70)
successful_results = [r for r in results if 'error' not in r and r['avg_score'] > 0]
if successful_results:
# Classement par performance
sorted_by_score = sorted(successful_results, key=lambda x: x['avg_score'], reverse=True)
print(f"\n🏆 CLASSEMENT PAR PERFORMANCE:")
for i, result in enumerate(sorted_by_score, 1):
print(f" {i:2d}. {result['name']:20s} | {result['avg_score']:.1f}/10 | {result['avg_time']:.2f}s | {result['file_size_mb']:.0f}MB | {result['type']}")
# Classement par efficacité
sorted_by_efficiency = sorted(successful_results, key=lambda x: x['efficiency'], reverse=True)
print(f"\n⚡ CLASSEMENT PAR EFFICACITÉ:")
for i, result in enumerate(sorted_by_efficiency, 1):
print(f" {i:2d}. {result['name']:20s} | {result['efficiency']:.2f} score/s | {result['file_size_mb']:.0f}MB")
# Analyse par type
print(f"\n📈 ANALYSE PAR TYPE DE MODÈLE:")
general_models = [r for r in successful_results if r['type'] == 'general']
mcp_specialized = [r for r in successful_results if r['type'] == 'mcp_specialized']
code_specialized = [r for r in successful_results if r['type'] == 'code_specialized']
if general_models:
avg_general = sum(r['avg_score'] for r in general_models) / len(general_models)
print(f" Modèles généraux ({len(general_models)}): {avg_general:.1f}/10 moyen")
if mcp_specialized:
avg_mcp = sum(r['avg_score'] for r in mcp_specialized) / len(mcp_specialized)
print(f" Spécialisés MCP ({len(mcp_specialized)}): {avg_mcp:.1f}/10 moyen")
if code_specialized:
avg_code = sum(r['avg_score'] for r in code_specialized) / len(code_specialized)
print(f" Spécialisés Code ({len(code_specialized)}): {avg_code:.1f}/10 moyen")
# Meilleur modèle global
best = sorted_by_score[0]
most_efficient = sorted_by_efficiency[0]
print(f"\n🎯 MEILLEUR MODÈLE GLOBAL: {best['name']}")
print(f" Score: {best['avg_score']:.1f}/10")
print(f" Temps: {best['avg_time']:.2f}s")
print(f" Taille: {best['file_size_mb']:.0f}MB")
print(f" Type: {best['type']}")
print(f"\n⚡ MODÈLE LE PLUS EFFICACE: {most_efficient['name']}")
print(f" Efficacité: {most_efficient['efficiency']:.2f} score/s")
# Recommandations finales
print(f"\n💡 RECOMMANDATIONS FINALES:")
if best['avg_score'] >= 7:
print(f"✅ {best['name']} est EXCELLENT pour la production MCP")
elif best['avg_score'] >= 5:
print(f"👍 {best['name']} est BON pour la production MCP")
else:
print(f"⚠️ {best['name']} nécessite des améliorations")
# Comparaison spécialisés vs généraux
if mcp_specialized and general_models:
best_specialized = max(mcp_specialized, key=lambda x: x['avg_score'])
best_general = max(general_models, key=lambda x: x['avg_score'])
print(f"\n🔬 SPÉCIALISÉS VS GÉNÉRAUX:")
print(f" Meilleur spécialisé MCP: {best_specialized['name']} ({best_specialized['avg_score']:.1f}/10)")
print(f" Meilleur général: {best_general['name']} ({best_general['avg_score']:.1f}/10)")
if best_specialized['avg_score'] > best_general['avg_score']:
print(f" ✅ Les modèles spécialisés MCP sont meilleurs!")
else:
print(f" 🤔 Les modèles généraux performent aussi bien")
# Analyse détaillée du meilleur
print(f"\n📋 DÉTAILS DU MEILLEUR MODÈLE ({best['name']}):")
for result in best['results']:
status = "✅" if result['score'] >= 6 else "⚠️" if result['score'] >= 4 else "❌"
print(f" {status} {result['test']}: {result['score']}/10 ({result['time']:.2f}s)")
# Sauvegarder résultats complets
comprehensive_results = {
'evaluation_type': 'comprehensive_mcp_test',
'total_models_tested': len(models),
'successful_models': len(successful_results),
'results': results,
'ranking_by_score': sorted_by_score if successful_results else [],
'ranking_by_efficiency': sorted_by_efficiency if successful_results else [],
'best_overall': best if successful_results else None,
'most_efficient': most_efficient if successful_results else None
}
with open("comprehensive_mcp_evaluation.json", "w", encoding="utf-8") as f:
json.dump(comprehensive_results, f, indent=2, ensure_ascii=False)
print(f"\n📄 Résultats complets sauvegardés dans: comprehensive_mcp_evaluation.json")
if __name__ == "__main__":
main() |