rts-commander / tests /scripts /quick_model_comparison.py
Luigi's picture
Organize project structure: move test scripts to tests/scripts and documentation to docs/reports
d28c36c
raw
history blame
5.19 kB
"""
Test rapide de comparaison des modèles pour les tâches MCP
Focus sur les tests les plus importants
"""
import sys
import os
import json
import time
# Ajouter le chemin pour les imports
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
def test_model(model_path, model_name):
"""Test rapide d'un modèle"""
try:
from llama_cpp import Llama
print(f"🔄 Test de {model_name}...")
# Initialiser avec des paramètres plus rapides
llm = Llama(
model_path=model_path,
n_ctx=1024,
n_threads=1,
verbose=False
)
# Test simple de compréhension MCP
prompt = """Tu es un assistant IA pour un jeu RTS via MCP.
Outils: get_game_state(), move_units(unit_ids, target_x, target_y)
Commande: "Montre-moi l'état du jeu"
Réponds avec JSON: {{"tool": "nom_outil", "args": {{}}}}"""
start_time = time.time()
response = llm(
prompt,
max_tokens=100,
temperature=0.1,
stop=["</s>", "<|im_end|>"]
)
response_time = time.time() - start_time
response_text = response['choices'][0]['text'].strip()
# Analyser la réponse
score = 0
# Vérifier JSON
try:
json.loads(response_text)
score += 3
except:
pass
# Vérifier outil correct
if "get_game_state" in response_text:
score += 4
# Vérifier structure
if "tool" in response_text:
score += 2
# Vérifier cohérence
if "game" in response_text.lower():
score += 1
score = min(score, 10)
print(f"✅ {model_name}: {score}/10 | Temps: {response_time:.2f}s")
print(f" Réponse: {response_text[:100]}...")
return {
'name': model_name,
'score': score,
'time': response_time,
'response': response_text
}
except Exception as e:
print(f"❌ {model_name}: Erreur - {e}")
return {
'name': model_name,
'score': 0,
'time': 0,
'error': str(e)
}
def main():
"""Test rapide comparatif"""
print("🚀 TEST RAPIDE COMPARATIF MCP")
print("=" * 50)
# Modèles à tester
models = [
{
'name': 'Qwen2.5-0.5B',
'path': 'qwen2.5-0.5b-instruct-q4_0.gguf'
},
{
'name': 'Qwen3-0.6B',
'path': 'Qwen3-0.6B-Q8_0.gguf'
},
{
'name': 'Gemma-3-1B',
'path': 'google_gemma-3-1b-it-qat-Q4_0.gguf'
}
]
results = []
for model in models:
if os.path.exists(model['path']):
result = test_model(model['path'], model['name'])
results.append(result)
else:
print(f"❌ Fichier non trouvé: {model['path']}")
# Résultats
print("\n" + "=" * 50)
print("📊 RÉSULTATS COMPARATIFS")
print("=" * 50)
# Classement
sorted_results = sorted(results, key=lambda x: x['score'], reverse=True)
print(f"\n🏆 CLASSEMENT:")
for i, result in enumerate(sorted_results, 1):
if 'error' not in result:
print(f" {i}. {result['name']}: {result['score']}/10 ({result['time']:.2f}s)")
else:
print(f" {i}. {result['name']}: ÉCHEC")
# Analyse
successful_results = [r for r in results if 'error' not in r and r['score'] > 0]
if successful_results:
best_model = successful_results[0]
print(f"\n🎯 MEILLEUR MODÈLE: {best_model['name']}")
print(f" Score: {best_model['score']}/10")
print(f" Temps: {best_model['time']:.2f}s")
# Recommandations
if best_model['score'] >= 7:
print(f"\n✅ RECOMMANDATION: {best_model['name']} est EXCELLENT pour MCP")
elif best_model['score'] >= 5:
print(f"\n👍 RECOMMANDATION: {best_model['name']} est BON pour MCP")
else:
print(f"\n⚠️ RECOMMANDATION: {best_model['name']} est LIMITÉ pour MCP")
# Performance vs taille
print(f"\n⚖️ PERFORMANCE:")
for result in successful_results:
efficiency = result['score'] / result['time'] if result['time'] > 0 else 0
file_size = os.path.getsize([m['path'] for m in models if m['name'] == result['name']][0]) / (1024*1024)
print(f" {result['name']}: {efficiency:.2f} score/s | {file_size:.0f} MB")
# Sauvegarder
with open("quick_model_comparison.json", "w", encoding="utf-8") as f:
json.dump({
'results': results,
'ranking': sorted_results,
'best_model': successful_results[0]['name'] if successful_results else None
}, f, indent=2, ensure_ascii=False)
print(f"\n📄 Résultats sauvegardés dans: quick_model_comparison.json")
if __name__ == "__main__":
main()