""" Test script to evaluate Qwen2.5 0.5B capabilities with MCP for RTS game Tests basic MCP understanding and complex planning capabilities """ import json import time from typing import Dict, Any, List from ai_analysis import query_llm # Test prompts for different capability levels TEST_PROMPTS = { "basic_mcp": [ { "name": "Simple Tool Call", "prompt": """ You are an AI assistant controlling an RTS game through MCP (Model Context Protocol). Available tools: - get_game_state(): Get current game state - move_units(unit_ids, target_x, target_y): Move units to position - attack_unit(attacker_ids, target_id): Attack enemy unit User command: "Show me the current game state" Respond with a JSON object containing the tool call to execute. """, "expected": {"tool": "get_game_state", "args": {}} }, { "name": "Basic Action Translation", "prompt": """ You are an AI assistant controlling an RTS game through MCP. Available tools: - move_units(unit_ids, target_x, target_y): Move units to position - attack_unit(attacker_ids, target_id): Attack enemy unit User command: "Move my infantry to position 100, 200" Respond with a JSON object containing the tool call to execute. """, "expected": {"tool": "move_units", "args": {"unit_ids": ["infantry"], "target_x": 100, "target_y": 200}} } ], "complex_planning": [ { "name": "Multi-step Strategy", "prompt": """ You are an AI assistant controlling an RTS game through MCP. Available tools: - get_game_state(): Get current game state - move_units(unit_ids, target_x, target_y): Move units - attack_unit(attacker_ids, target_id): Attack enemy - build_building(building_type, position_x, position_y, player_id): Build building User command: "I want to build a base near the ore field and defend it with turrets" Break this down into a sequence of MCP tool calls. Respond with a JSON array of tool calls. """, "expected": {"type": "sequence", "steps": ["get_game_state", "build_building", "build_building"]} }, { "name": "Strategic Analysis", "prompt": """ You are an AI assistant controlling an RTS game through MCP. Available tools: - get_game_state(): Get current game state - get_ai_analysis(language): Get tactical analysis User command: "Analyze the battlefield and suggest the best strategy" Respond with a JSON object containing the tool calls needed. """, "expected": {"type": "analysis", "steps": ["get_game_state", "get_ai_analysis"]} } ], "advanced_mcp": [ { "name": "Parameter Extraction", "prompt": """ You are an AI assistant controlling an RTS game through MCP. Available tools: - move_units(unit_ids, target_x, target_y): Move units User command: "Move tanks 1, 3, and 7 to coordinates 150, 75" Extract the parameters and respond with a JSON tool call. """, "expected": {"tool": "move_units", "args": {"unit_ids": [1, 3, 7], "target_x": 150, "target_y": 75}} }, { "name": "Error Handling", "prompt": """ You are an AI assistant controlling an RTS game through MCP. Available tools: - move_units(unit_ids, target_x, target_y): Move units User command: "Move my units to the enemy base" Since you don't know the exact coordinates, how would you handle this? Respond with a JSON object showing your approach. """, "expected": {"type": "needs_clarification", "message": "Need coordinates for enemy base"} } ] } def test_qwen_capabilities(): """Run comprehensive tests on Qwen2.5 0.5B MCP capabilities""" print("=== Testing Qwen2.5 0.5B MCP Capabilities ===\n") results = {} for category, tests in TEST_PROMPTS.items(): print(f"\n๐Ÿ“Š Testing {category.replace('_', ' ').title()}:") print("-" * 50) category_results = [] for test in tests: print(f"\n๐Ÿงช Test: {test['name']}") print(f"Prompt: {test['prompt'][:100]}...") try: # Query the LLM start_time = time.time() response = query_llm( prompt=test['prompt'], max_tokens=500, temperature=0.1, system_message="You are an AI assistant that responds with JSON objects for MCP tool calls." ) response_time = time.time() - start_time # Parse and analyze response analysis = analyze_response(test, response, response_time) category_results.append(analysis) print(f"โœ… Response time: {response_time:.2f}s") print(f"๐Ÿ“ Response: {response[:200]}...") print(f"๐Ÿ“Š Analysis: {analysis['score']}/10") except Exception as e: print(f"โŒ Error: {e}") category_results.append({ 'test': test['name'], 'error': str(e), 'score': 0 }) results[category] = category_results # Generate summary report generate_summary_report(results) return results def analyze_response(test: Dict[str, Any], response: str, response_time: float) -> Dict[str, Any]: """Analyze the LLM response and score its performance""" analysis = { 'test': test['name'], 'response': response, 'response_time': response_time, 'score': 0, 'strengths': [], 'weaknesses': [], 'details': {} } # Basic response quality checks if not response or response.strip() == "": analysis['weaknesses'].append("Empty response") return analysis # Check for JSON structure try: # Try to parse as JSON parsed = json.loads(response) analysis['details']['json_valid'] = True analysis['strengths'].append("Valid JSON structure") # Check if it matches expected structure if 'expected' in test: expected = test['expected'] if isinstance(expected, dict): if 'tool' in expected and 'tool' in parsed: if parsed['tool'] == expected['tool']: analysis['score'] += 4 analysis['strengths'].append("Correct tool selection") else: analysis['weaknesses'].append(f"Wrong tool: {parsed.get('tool')} vs {expected['tool']}") # Check arguments if 'args' in expected and 'args' in parsed: arg_match = compare_arguments(parsed['args'], expected['args']) analysis['score'] += arg_match * 3 if arg_match > 0.7: analysis['strengths'].append("Good argument matching") else: analysis['weaknesses'].append("Poor argument matching") except json.JSONDecodeError: analysis['details']['json_valid'] = False analysis['weaknesses'].append("Invalid JSON format") # Check for tool-like patterns in text if 'get_game_state' in response: analysis['score'] += 2 analysis['strengths'].append("Mentions correct tool") if 'move_units' in response or 'attack_unit' in response: analysis['score'] += 1 # Response time scoring if response_time < 5.0: analysis['score'] += 1 analysis['strengths'].append("Fast response") elif response_time > 15.0: analysis['weaknesses'].append("Slow response") # Content relevance scoring if any(keyword in response.lower() for keyword in ['game', 'state', 'move', 'attack', 'build']): analysis['score'] += 1 analysis['strengths'].append("Relevant content") # Cap for score analysis['score'] = min(analysis['score'], 10) return analysis def compare_arguments(actual: Dict, expected: Dict) -> float: """Compare argument dictionaries and return match percentage""" if not actual or not expected: return 0.0 matches = 0 total = len(expected) for key, expected_value in expected.items(): if key in actual: actual_value = actual[key] if isinstance(expected_value, list) and isinstance(actual_value, list): # Compare lists if set(expected_value) == set(actual_value): matches += 1 elif expected_value == actual_value: matches += 1 return matches / total if total > 0 else 0.0 def generate_summary_report(results: Dict[str, List[Dict]]): """Generate a comprehensive summary report""" print("\n" + "="*60) print("๐Ÿ“Š QWEN2.5 0.5B MCP CAPABILITY ASSESSMENT REPORT") print("="*60) overall_scores = [] for category, category_results in results.items(): if not category_results: continue category_scores = [r.get('score', 0) for r in category_results if 'score' in r] avg_score = sum(category_scores) / len(category_scores) if category_scores else 0 overall_scores.append(avg_score) print(f"\n๐Ÿ” {category.replace('_', ' ').title()}:") print(f" Average Score: {avg_score:.1f}/10") for result in category_results: if 'error' in result: print(f" โŒ {result['test']}: ERROR - {result['error']}") else: print(f" {'โœ…' if result['score'] >= 6 else 'โš ๏ธ'} {result['test']}: {result['score']}/10") if result['strengths']: print(f" Strengths: {', '.join(result['strengths'][:2])}") if result['weaknesses']: print(f" Weaknesses: {', '.join(result['weaknesses'][:2])}") # Overall assessment if overall_scores: overall_avg = sum(overall_scores) / len(overall_scores) print(f"\n๐ŸŽฏ OVERALL ASSESSMENT: {overall_avg:.1f}/10") if overall_avg >= 8: print("๐Ÿ’ช EXCELLENT - Qwen2.5 0.5B is highly capable for MCP tasks") elif overall_avg >= 6: print("๐Ÿ‘ GOOD - Qwen2.5 0.5B is capable with some limitations") elif overall_avg >= 4: print("โš ๏ธ MODERATE - Qwen2.5 0.5B has significant limitations") else: print("โŒ POOR - Qwen2.5 0.5B is not suitable for MCP tasks") # Recommendations print(f"\n๐Ÿ’ก RECOMMENDATIONS:") if overall_avg >= 7: print("- Use Qwen2.5 0.5B for MCP translation with confidence") print("- Implement prompt engineering for complex tasks") print("- Add validation layer for safety") elif overall_avg >= 5: print("- Use Qwen2.5 0.5B for simple MCP tasks") print("- Implement strong validation and fallback mechanisms") print("- Consider using larger models for complex planning") else: print("- Consider upgrading to a larger model (1.5B+)") print("- Use Qwen2.5 0.5B only for very simple translations") print("- Implement extensive error handling") if __name__ == "__main__": print("Starting Qwen2.5 0.5B MCP capability assessment...") print("This will test the model's ability to translate user commands to MCP tool calls.") print("Make sure the model is downloaded and available at: qwen2.5-0.5b-instruct-q4_0.gguf") try: results = test_qwen_capabilities() # Save detailed results to file with open("/home/luigi/rts/web/qwen_mcp_assessment.json", "w") as f: json.dump(results, f, indent=2) print("\n๐Ÿ“„ Detailed results saved to: qwen_mcp_assessment.json") except Exception as e: print(f"โŒ Assessment failed: {e}") print("Make sure the AI model is properly downloaded and configured.")