Spaces:
Runtime error
Runtime error
| import torch | |
| import torch.nn as nn | |
| from torch.utils.data import IterableDataset, Dataset | |
| from transformers import ViTFeatureExtractor | |
| from transformers import ViTImageProcessor | |
| from io import BytesIO | |
| from base64 import b64decode | |
| from PIL import Image,ImageFile | |
| import base64 | |
| import itertools | |
| from concurrent.futures import ThreadPoolExecutor | |
| from functools import partial | |
| import io | |
| import urllib | |
| import random | |
| import PIL.Image | |
| from datasets import load_dataset | |
| from datasets.utils.file_utils import get_datasets_user_agent | |
| USER_AGENT = get_datasets_user_agent() | |
| # import model | |
| model_id = 'google/vit-base-patch16-224-in21k' | |
| feature_extractor = ViTFeatureExtractor.from_pretrained( | |
| model_id | |
| ) | |
| class BilingualDataset(Dataset): | |
| def __init__(self, ds,tokenizer_tgt, seq_len): | |
| super().__init__() | |
| self.seq_len = seq_len | |
| ImageFile.LOAD_TRUNCATED_IMAGES = True | |
| self.ds = ds | |
| self.tokenizer_tgt = tokenizer_tgt | |
| # self.tgt_lang = tgt_lang | |
| self.processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224-in21k') | |
| self.sos_token = torch.tensor([tokenizer_tgt.convert_tokens_to_ids("[SOS]")], dtype=torch.int64) | |
| self.eos_token = torch.tensor([tokenizer_tgt.convert_tokens_to_ids("[EOS]")], dtype=torch.int64) | |
| self.pad_token = torch.tensor([tokenizer_tgt.convert_tokens_to_ids("[PAD]")], dtype=torch.int64) | |
| def __len__(self): | |
| return len(self.ds) | |
| # def __getitem__(self): | |
| # pass | |
| def __getitem__(self, idx): | |
| data_pair = self.ds[idx] | |
| src_image = data_pair['image_base64_str'] | |
| tgt_text = data_pair['outputs'] | |
| src_image = Image.open(BytesIO(b64decode(''.join(src_image)))) | |
| if src_image.mode != 'RGB': | |
| src_image = src_image.convert('RGB') | |
| src_image = self.processor(src_image, return_tensors='pt') | |
| # Transform the text into tokens | |
| dec_input_tokens = self.tokenizer_tgt.encode(tgt_text) | |
| # # Add sos, eos and padding to each sentence | |
| # enc_num_padding_tokens = self.seq_len - len(enc_input_tokens) - 2 # We will add <s> and </s> | |
| # We will only add <s>, and </s> only on the label | |
| dec_input_tokens = dec_input_tokens[:self.seq_len-1] | |
| dec_num_padding_tokens = self.seq_len - len(dec_input_tokens) -1 | |
| # Make sure the number of padding tokens is not negative. If it is, the sentence is too long | |
| if dec_num_padding_tokens < 0: | |
| raise ValueError("Sentence is too long") | |
| # # Add <s> and </s> token | |
| # encoder_input = torch.cat( | |
| # [ | |
| # self.sos_token, | |
| # torch.tensor(enc_input_tokens, dtype=torch.int64), | |
| # self.eos_token, | |
| # torch.tensor([self.pad_token] * enc_num_padding_tokens, dtype=torch.int64), | |
| # ], | |
| # dim=0, | |
| # ) | |
| # Add only <s> token | |
| decoder_input = torch.cat( | |
| [ | |
| self.sos_token, | |
| torch.tensor(dec_input_tokens, dtype=torch.int64), | |
| torch.tensor([self.pad_token] * dec_num_padding_tokens, dtype=torch.int64), | |
| ], | |
| dim=0, | |
| ) | |
| # Add only </s> token | |
| label = torch.cat( | |
| [ | |
| torch.tensor(dec_input_tokens, dtype=torch.int64), | |
| self.eos_token, | |
| torch.tensor([self.pad_token] * dec_num_padding_tokens, dtype=torch.int64), | |
| ], | |
| dim=0, | |
| ) | |
| assert decoder_input.size(0) == self.seq_len | |
| assert label.size(0) == self.seq_len | |
| return { | |
| 'encoder_input' : src_image['pixel_values'].squeeze(0).squeeze(0).squeeze(0).squeeze(0).squeeze(0), # (seq_len) | |
| 'decoder_input' : decoder_input, # (seq_len) | |
| ## encoder mask not used :) | |
| "encoder_mask" : (torch.cat((torch.ones(197,),torch.zeros(63),),)).unsqueeze(0).unsqueeze(0), # (1, 1, seq_len) | |
| "decoder_mask" : (decoder_input != self.pad_token).unsqueeze(0).int() & causal_mask(decoder_input.size(0)), # (1, seq_len) & (1, seq_len, seq_len), | |
| "label" : label, | |
| # "src_text": src_text, | |
| "tgt_text" : tgt_text | |
| } | |
| # yield encoder_input, decoder_input, encoder_mask, decoder_mask, label | |
| def causal_mask(size): | |
| mask = torch.triu(torch.ones((1, size, size)), diagonal=1).type(torch.int) | |
| return mask == 0 |