Spaces:
Runtime error
Runtime error
Atin Sakkeer Hussain
commited on
Commit
Β·
b5e6f78
1
Parent(s):
795ce43
Add Model
Browse files- util/.ipynb_checkpoints/misc-checkpoint.py +422 -0
- util/lr_sched.py +21 -0
- util/misc.py +422 -0
util/.ipynb_checkpoints/misc-checkpoint.py
ADDED
|
@@ -0,0 +1,422 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
|
| 4 |
+
# This source code is licensed under the license found in the
|
| 5 |
+
# LICENSE file in the root directory of this source tree.
|
| 6 |
+
# --------------------------------------------------------
|
| 7 |
+
# References:
|
| 8 |
+
# DeiT: https://github.com/facebookresearch/deit
|
| 9 |
+
# BEiT: https://github.com/microsoft/unilm/tree/master/beit
|
| 10 |
+
# --------------------------------------------------------
|
| 11 |
+
|
| 12 |
+
import builtins
|
| 13 |
+
import datetime
|
| 14 |
+
import os
|
| 15 |
+
import time
|
| 16 |
+
from collections import defaultdict, deque
|
| 17 |
+
from pathlib import Path
|
| 18 |
+
import urllib
|
| 19 |
+
from tqdm import tqdm
|
| 20 |
+
|
| 21 |
+
import torch
|
| 22 |
+
import torch.utils.data
|
| 23 |
+
import torch.distributed as dist
|
| 24 |
+
from torch import inf
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class SmoothedValue(object):
|
| 28 |
+
"""Track a series of values and provide access to smoothed values over a
|
| 29 |
+
window or the global series average.
|
| 30 |
+
"""
|
| 31 |
+
|
| 32 |
+
def __init__(self, window_size=20, fmt=None):
|
| 33 |
+
if fmt is None:
|
| 34 |
+
fmt = "{median:.4f} ({global_avg:.4f})"
|
| 35 |
+
self.deque = deque(maxlen=window_size)
|
| 36 |
+
self.total = 0.0
|
| 37 |
+
self.count = 0
|
| 38 |
+
self.fmt = fmt
|
| 39 |
+
|
| 40 |
+
def update(self, value, n=1):
|
| 41 |
+
self.deque.append(value)
|
| 42 |
+
self.count += n
|
| 43 |
+
self.total += value * n
|
| 44 |
+
|
| 45 |
+
def synchronize_between_processes(self):
|
| 46 |
+
"""
|
| 47 |
+
Warning: does not synchronize the deque!
|
| 48 |
+
"""
|
| 49 |
+
if not is_dist_avail_and_initialized():
|
| 50 |
+
return
|
| 51 |
+
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
|
| 52 |
+
dist.barrier()
|
| 53 |
+
dist.all_reduce(t)
|
| 54 |
+
t = t.tolist()
|
| 55 |
+
self.count = int(t[0])
|
| 56 |
+
self.total = t[1]
|
| 57 |
+
|
| 58 |
+
@property
|
| 59 |
+
def median(self):
|
| 60 |
+
d = torch.tensor(list(self.deque))
|
| 61 |
+
return d.median().item()
|
| 62 |
+
|
| 63 |
+
@property
|
| 64 |
+
def avg(self):
|
| 65 |
+
d = torch.tensor(list(self.deque), dtype=torch.float32)
|
| 66 |
+
return d.mean().item()
|
| 67 |
+
|
| 68 |
+
@property
|
| 69 |
+
def global_avg(self):
|
| 70 |
+
return self.total / self.count
|
| 71 |
+
|
| 72 |
+
@property
|
| 73 |
+
def max(self):
|
| 74 |
+
return max(self.deque)
|
| 75 |
+
|
| 76 |
+
@property
|
| 77 |
+
def value(self):
|
| 78 |
+
return self.deque[-1]
|
| 79 |
+
|
| 80 |
+
def __str__(self):
|
| 81 |
+
return self.fmt.format(
|
| 82 |
+
median=self.median,
|
| 83 |
+
avg=self.avg,
|
| 84 |
+
global_avg=self.global_avg,
|
| 85 |
+
max=self.max,
|
| 86 |
+
value=self.value)
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
class MetricLogger(object):
|
| 90 |
+
def __init__(self, delimiter="\t"):
|
| 91 |
+
self.meters = defaultdict(SmoothedValue)
|
| 92 |
+
self.delimiter = delimiter
|
| 93 |
+
|
| 94 |
+
def update(self, **kwargs):
|
| 95 |
+
for k, v in kwargs.items():
|
| 96 |
+
if v is None:
|
| 97 |
+
continue
|
| 98 |
+
if isinstance(v, torch.Tensor):
|
| 99 |
+
v = v.item()
|
| 100 |
+
assert isinstance(v, (float, int))
|
| 101 |
+
self.meters[k].update(v)
|
| 102 |
+
|
| 103 |
+
def __getattr__(self, attr):
|
| 104 |
+
if attr in self.meters:
|
| 105 |
+
return self.meters[attr]
|
| 106 |
+
if attr in self.__dict__:
|
| 107 |
+
return self.__dict__[attr]
|
| 108 |
+
raise AttributeError("'{}' object has no attribute '{}'".format(
|
| 109 |
+
type(self).__name__, attr))
|
| 110 |
+
|
| 111 |
+
def __str__(self):
|
| 112 |
+
loss_str = []
|
| 113 |
+
for name, meter in self.meters.items():
|
| 114 |
+
loss_str.append(
|
| 115 |
+
"{}: {}".format(name, str(meter))
|
| 116 |
+
)
|
| 117 |
+
return self.delimiter.join(loss_str)
|
| 118 |
+
|
| 119 |
+
def synchronize_between_processes(self):
|
| 120 |
+
for meter in self.meters.values():
|
| 121 |
+
meter.synchronize_between_processes()
|
| 122 |
+
|
| 123 |
+
def add_meter(self, name, meter):
|
| 124 |
+
self.meters[name] = meter
|
| 125 |
+
|
| 126 |
+
def log_every(self, iterable, print_freq, header=None):
|
| 127 |
+
i = 0
|
| 128 |
+
if not header:
|
| 129 |
+
header = ''
|
| 130 |
+
start_time = time.time()
|
| 131 |
+
end = time.time()
|
| 132 |
+
iter_time = SmoothedValue(fmt='{avg:.4f}')
|
| 133 |
+
data_time = SmoothedValue(fmt='{avg:.4f}')
|
| 134 |
+
space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
|
| 135 |
+
log_msg = [
|
| 136 |
+
header,
|
| 137 |
+
'[{0' + space_fmt + '}/{1}]',
|
| 138 |
+
'eta: {eta}',
|
| 139 |
+
'{meters}',
|
| 140 |
+
'time: {time}',
|
| 141 |
+
'data: {data}'
|
| 142 |
+
]
|
| 143 |
+
if torch.cuda.is_available():
|
| 144 |
+
log_msg.append('max mem: {memory:.0f}')
|
| 145 |
+
log_msg = self.delimiter.join(log_msg)
|
| 146 |
+
MB = 1024.0 * 1024.0
|
| 147 |
+
for obj in iterable:
|
| 148 |
+
data_time.update(time.time() - end)
|
| 149 |
+
yield obj
|
| 150 |
+
iter_time.update(time.time() - end)
|
| 151 |
+
if i % print_freq == 0 or i == len(iterable) - 1:
|
| 152 |
+
eta_seconds = iter_time.global_avg * (len(iterable) - i)
|
| 153 |
+
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
|
| 154 |
+
if torch.cuda.is_available():
|
| 155 |
+
print(log_msg.format(
|
| 156 |
+
i, len(iterable), eta=eta_string,
|
| 157 |
+
meters=str(self),
|
| 158 |
+
time=str(iter_time), data=str(data_time),
|
| 159 |
+
memory=torch.cuda.max_memory_allocated() / MB))
|
| 160 |
+
else:
|
| 161 |
+
print(log_msg.format(
|
| 162 |
+
i, len(iterable), eta=eta_string,
|
| 163 |
+
meters=str(self),
|
| 164 |
+
time=str(iter_time), data=str(data_time)))
|
| 165 |
+
i += 1
|
| 166 |
+
end = time.time()
|
| 167 |
+
total_time = time.time() - start_time
|
| 168 |
+
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
|
| 169 |
+
print('{} Total time: {} ({:.4f} s / it)'.format(
|
| 170 |
+
header, total_time_str, total_time / len(iterable)))
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
def setup_for_distributed(is_master):
|
| 174 |
+
"""
|
| 175 |
+
This function disables printing when not in master process
|
| 176 |
+
"""
|
| 177 |
+
builtin_print = builtins.print
|
| 178 |
+
|
| 179 |
+
def print(*args, **kwargs):
|
| 180 |
+
force = kwargs.pop('force', False)
|
| 181 |
+
force = force or (get_world_size() > 8)
|
| 182 |
+
if is_master or force:
|
| 183 |
+
now = datetime.datetime.now().time()
|
| 184 |
+
builtin_print('[{}] '.format(now), end='') # print with time stamp
|
| 185 |
+
builtin_print(*args, **kwargs)
|
| 186 |
+
|
| 187 |
+
builtins.print = print
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
def is_dist_avail_and_initialized():
|
| 191 |
+
if not dist.is_available():
|
| 192 |
+
return False
|
| 193 |
+
if not dist.is_initialized():
|
| 194 |
+
return False
|
| 195 |
+
return True
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
def get_world_size():
|
| 199 |
+
if not is_dist_avail_and_initialized():
|
| 200 |
+
return 1
|
| 201 |
+
return dist.get_world_size()
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
def get_rank():
|
| 205 |
+
if not is_dist_avail_and_initialized():
|
| 206 |
+
return 0
|
| 207 |
+
return dist.get_rank()
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
def is_main_process():
|
| 211 |
+
return get_rank() == 0
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
def save_on_master(*args, **kwargs):
|
| 215 |
+
if is_main_process():
|
| 216 |
+
torch.save(*args, **kwargs)
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
def init_distributed_mode(args):
|
| 220 |
+
if args.dist_on_itp:
|
| 221 |
+
args.rank = int(os.environ['OMPI_COMM_WORLD_RANK'])
|
| 222 |
+
args.world_size = int(os.environ['OMPI_COMM_WORLD_SIZE'])
|
| 223 |
+
args.gpu = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])
|
| 224 |
+
args.dist_url = "tcp://%s:%s" % (os.environ['MASTER_ADDR'], os.environ['MASTER_PORT'])
|
| 225 |
+
os.environ['LOCAL_RANK'] = str(args.gpu)
|
| 226 |
+
os.environ['RANK'] = str(args.rank)
|
| 227 |
+
os.environ['WORLD_SIZE'] = str(args.world_size)
|
| 228 |
+
# ["RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT", "LOCAL_RANK"]
|
| 229 |
+
elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
|
| 230 |
+
args.rank = int(os.environ["RANK"])
|
| 231 |
+
args.world_size = int(os.environ['WORLD_SIZE'])
|
| 232 |
+
args.gpu = int(os.environ['LOCAL_RANK'])
|
| 233 |
+
elif 'SLURM_PROCID' in os.environ:
|
| 234 |
+
args.rank = int(os.environ['SLURM_PROCID'])
|
| 235 |
+
args.gpu = args.rank % torch.cuda.device_count()
|
| 236 |
+
else:
|
| 237 |
+
print('Not using distributed mode')
|
| 238 |
+
setup_for_distributed(is_master=True) # hack
|
| 239 |
+
args.distributed = False
|
| 240 |
+
return
|
| 241 |
+
|
| 242 |
+
args.distributed = True
|
| 243 |
+
|
| 244 |
+
print("GPU::", args.gpu)
|
| 245 |
+
torch.cuda.set_device(args.gpu)
|
| 246 |
+
args.dist_backend = 'nccl'
|
| 247 |
+
print('| distributed init (rank {}): {}, gpu {}'.format(
|
| 248 |
+
args.rank, args.dist_url, args.gpu), flush=True)
|
| 249 |
+
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
|
| 250 |
+
world_size=args.world_size, rank=args.rank)
|
| 251 |
+
torch.distributed.barrier()
|
| 252 |
+
setup_for_distributed(args.rank == 0)
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
class NativeScalerWithGradNormCount:
|
| 256 |
+
state_dict_key = "amp_scaler"
|
| 257 |
+
|
| 258 |
+
def __init__(self):
|
| 259 |
+
self._scaler = torch.cuda.amp.GradScaler()
|
| 260 |
+
|
| 261 |
+
def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True):
|
| 262 |
+
self._scaler.scale(loss).backward(create_graph=create_graph)
|
| 263 |
+
if update_grad:
|
| 264 |
+
if clip_grad is not None:
|
| 265 |
+
assert parameters is not None
|
| 266 |
+
self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place
|
| 267 |
+
norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad)
|
| 268 |
+
else:
|
| 269 |
+
self._scaler.unscale_(optimizer)
|
| 270 |
+
norm = get_grad_norm_(parameters)
|
| 271 |
+
self._scaler.step(optimizer)
|
| 272 |
+
self._scaler.update()
|
| 273 |
+
else:
|
| 274 |
+
norm = None
|
| 275 |
+
return norm
|
| 276 |
+
|
| 277 |
+
def state_dict(self):
|
| 278 |
+
return self._scaler.state_dict()
|
| 279 |
+
|
| 280 |
+
def load_state_dict(self, state_dict):
|
| 281 |
+
self._scaler.load_state_dict(state_dict)
|
| 282 |
+
|
| 283 |
+
|
| 284 |
+
def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor:
|
| 285 |
+
if isinstance(parameters, torch.Tensor):
|
| 286 |
+
parameters = [parameters]
|
| 287 |
+
parameters = [p for p in parameters if p.grad is not None]
|
| 288 |
+
norm_type = float(norm_type)
|
| 289 |
+
if len(parameters) == 0:
|
| 290 |
+
return torch.tensor(0.)
|
| 291 |
+
device = parameters[0].grad.device
|
| 292 |
+
if norm_type == inf:
|
| 293 |
+
total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters)
|
| 294 |
+
else:
|
| 295 |
+
total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type)
|
| 296 |
+
return total_norm
|
| 297 |
+
|
| 298 |
+
|
| 299 |
+
def save_model(args, epoch, model, model_without_ddp, optimizer, loss_scaler):
|
| 300 |
+
output_dir = Path(args.output_dir)
|
| 301 |
+
epoch_name = str(epoch)
|
| 302 |
+
if loss_scaler is not None:
|
| 303 |
+
checkpoint_paths = [output_dir / ('checkpoint.pth')]
|
| 304 |
+
for checkpoint_path in checkpoint_paths:
|
| 305 |
+
to_save = {
|
| 306 |
+
'model': model_without_ddp.state_dict(),
|
| 307 |
+
'optimizer': optimizer.state_dict(),
|
| 308 |
+
'epoch': epoch,
|
| 309 |
+
'scaler': loss_scaler.state_dict(),
|
| 310 |
+
'args': args,
|
| 311 |
+
}
|
| 312 |
+
|
| 313 |
+
save_on_master(to_save, checkpoint_path)
|
| 314 |
+
else:
|
| 315 |
+
client_state = {'epoch': epoch}
|
| 316 |
+
model.save_checkpoint(save_dir=args.output_dir, tag="checkpoint", client_state=client_state)
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
def load_model(model_without_ddp, optimizer, loss_scaler, path):
|
| 320 |
+
if path.startswith('https'):
|
| 321 |
+
checkpoint = torch.hub.load_state_dict_from_url(
|
| 322 |
+
path, map_location='cpu', check_hash=True)
|
| 323 |
+
else:
|
| 324 |
+
checkpoint = torch.load(path, map_location='cpu')
|
| 325 |
+
new_checkpoint = {}
|
| 326 |
+
if optimizer is not None:
|
| 327 |
+
optimizer.load_state_dict(checkpoint['optimizer'])
|
| 328 |
+
if loss_scaler is not None:
|
| 329 |
+
loss_scaler.load_state_dict(checkpoint['scaler'])
|
| 330 |
+
print(checkpoint.keys())
|
| 331 |
+
new_ckpt = {}
|
| 332 |
+
for key, value in checkpoint['model'].items():
|
| 333 |
+
key = key.replace("module.", "")
|
| 334 |
+
new_ckpt[key] = value
|
| 335 |
+
|
| 336 |
+
load_result = model_without_ddp.load_state_dict(new_ckpt, strict=True)
|
| 337 |
+
assert len(load_result.unexpected_keys) == 0, f"Unexpected keys: {load_result.unexpected_keys}"
|
| 338 |
+
print("Load checkpoint %s" % path)
|
| 339 |
+
return checkpoint['epoch']
|
| 340 |
+
|
| 341 |
+
|
| 342 |
+
def all_reduce_mean(x):
|
| 343 |
+
world_size = get_world_size()
|
| 344 |
+
if world_size > 1:
|
| 345 |
+
x_reduce = torch.tensor(x).cuda()
|
| 346 |
+
dist.all_reduce(x_reduce)
|
| 347 |
+
x_reduce /= world_size
|
| 348 |
+
return x_reduce.item()
|
| 349 |
+
else:
|
| 350 |
+
return x
|
| 351 |
+
|
| 352 |
+
|
| 353 |
+
def add_weight_decay(model, weight_decay=1e-5, skip_list=()):
|
| 354 |
+
decay = []
|
| 355 |
+
no_decay = []
|
| 356 |
+
for name, param in model.named_parameters():
|
| 357 |
+
if not param.requires_grad:
|
| 358 |
+
continue # frozen weights
|
| 359 |
+
if len(param.shape) == 1 or name.endswith(".bias") or name in skip_list:
|
| 360 |
+
no_decay.append(param)
|
| 361 |
+
else:
|
| 362 |
+
decay.append(param)
|
| 363 |
+
return [
|
| 364 |
+
{'params': no_decay, 'weight_decay': 0.},
|
| 365 |
+
{'params': decay, 'weight_decay': weight_decay}]
|
| 366 |
+
|
| 367 |
+
|
| 368 |
+
class DistributedSubEpochSampler(torch.utils.data.Sampler):
|
| 369 |
+
|
| 370 |
+
def __init__(self, dataset, num_replicas, rank, shuffle, split_epoch=1, seed=42):
|
| 371 |
+
self.dataset = dataset
|
| 372 |
+
self.num_replicas = num_replicas
|
| 373 |
+
self.rank = rank
|
| 374 |
+
self.shuffle = shuffle
|
| 375 |
+
self.split_epoch = split_epoch
|
| 376 |
+
self.seed = seed
|
| 377 |
+
|
| 378 |
+
self.num_samples = len(dataset) // (num_replicas * split_epoch)
|
| 379 |
+
|
| 380 |
+
def __len__(self):
|
| 381 |
+
return self.num_samples
|
| 382 |
+
|
| 383 |
+
def __iter__(self):
|
| 384 |
+
if self.shuffle:
|
| 385 |
+
# deterministically shuffle based on epoch and seed
|
| 386 |
+
g = torch.Generator()
|
| 387 |
+
g.manual_seed(self.seed + self.epoch // self.split_epoch)
|
| 388 |
+
indices = torch.randperm(len(self.dataset), generator=g).tolist() # type: ignore[arg-type]
|
| 389 |
+
else:
|
| 390 |
+
indices = list(range(len(self.dataset))) # type: ignore[arg-type]
|
| 391 |
+
|
| 392 |
+
indices = indices[self.rank * self.split_epoch + self.epoch % self.split_epoch::self.num_replicas * self.split_epoch]
|
| 393 |
+
assert len(indices) >= self.num_samples
|
| 394 |
+
indices = indices[:self.num_samples]
|
| 395 |
+
|
| 396 |
+
return iter(indices)
|
| 397 |
+
|
| 398 |
+
def set_epoch(self, epoch):
|
| 399 |
+
self.epoch = epoch
|
| 400 |
+
|
| 401 |
+
def download(url: str, root: str):
|
| 402 |
+
os.makedirs(root, exist_ok=True)
|
| 403 |
+
filename = os.path.basename(url)
|
| 404 |
+
download_target = os.path.join(root, filename)
|
| 405 |
+
|
| 406 |
+
if os.path.exists(download_target) and not os.path.isfile(download_target):
|
| 407 |
+
raise RuntimeError(f"{download_target} exists and is not a regular file")
|
| 408 |
+
|
| 409 |
+
if os.path.isfile(download_target):
|
| 410 |
+
return download_target
|
| 411 |
+
|
| 412 |
+
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
|
| 413 |
+
with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop:
|
| 414 |
+
while True:
|
| 415 |
+
buffer = source.read(8192)
|
| 416 |
+
if not buffer:
|
| 417 |
+
break
|
| 418 |
+
output.write(buffer)
|
| 419 |
+
loop.update(len(buffer))
|
| 420 |
+
|
| 421 |
+
|
| 422 |
+
return download_target
|
util/lr_sched.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
|
| 4 |
+
# This source code is licensed under the license found in the
|
| 5 |
+
# LICENSE file in the root directory of this source tree.
|
| 6 |
+
|
| 7 |
+
import math
|
| 8 |
+
|
| 9 |
+
def adjust_learning_rate(optimizer, epoch, args):
|
| 10 |
+
"""Decay the learning rate with half-cycle cosine after warmup"""
|
| 11 |
+
if epoch < args.warmup_epochs:
|
| 12 |
+
lr = args.lr * epoch / args.warmup_epochs
|
| 13 |
+
else:
|
| 14 |
+
lr = args.min_lr + (args.lr - args.min_lr) * 0.5 * \
|
| 15 |
+
(1. + math.cos(math.pi * (epoch - args.warmup_epochs) / (args.epochs - args.warmup_epochs)))
|
| 16 |
+
for param_group in optimizer.param_groups:
|
| 17 |
+
if "lr_scale" in param_group:
|
| 18 |
+
param_group["lr"] = lr * param_group["lr_scale"]
|
| 19 |
+
else:
|
| 20 |
+
param_group["lr"] = lr
|
| 21 |
+
return lr
|
util/misc.py
ADDED
|
@@ -0,0 +1,422 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
|
| 4 |
+
# This source code is licensed under the license found in the
|
| 5 |
+
# LICENSE file in the root directory of this source tree.
|
| 6 |
+
# --------------------------------------------------------
|
| 7 |
+
# References:
|
| 8 |
+
# DeiT: https://github.com/facebookresearch/deit
|
| 9 |
+
# BEiT: https://github.com/microsoft/unilm/tree/master/beit
|
| 10 |
+
# --------------------------------------------------------
|
| 11 |
+
|
| 12 |
+
import builtins
|
| 13 |
+
import datetime
|
| 14 |
+
import os
|
| 15 |
+
import time
|
| 16 |
+
from collections import defaultdict, deque
|
| 17 |
+
from pathlib import Path
|
| 18 |
+
import urllib
|
| 19 |
+
from tqdm import tqdm
|
| 20 |
+
|
| 21 |
+
import torch
|
| 22 |
+
import torch.utils.data
|
| 23 |
+
import torch.distributed as dist
|
| 24 |
+
from torch import inf
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class SmoothedValue(object):
|
| 28 |
+
"""Track a series of values and provide access to smoothed values over a
|
| 29 |
+
window or the global series average.
|
| 30 |
+
"""
|
| 31 |
+
|
| 32 |
+
def __init__(self, window_size=20, fmt=None):
|
| 33 |
+
if fmt is None:
|
| 34 |
+
fmt = "{median:.4f} ({global_avg:.4f})"
|
| 35 |
+
self.deque = deque(maxlen=window_size)
|
| 36 |
+
self.total = 0.0
|
| 37 |
+
self.count = 0
|
| 38 |
+
self.fmt = fmt
|
| 39 |
+
|
| 40 |
+
def update(self, value, n=1):
|
| 41 |
+
self.deque.append(value)
|
| 42 |
+
self.count += n
|
| 43 |
+
self.total += value * n
|
| 44 |
+
|
| 45 |
+
def synchronize_between_processes(self):
|
| 46 |
+
"""
|
| 47 |
+
Warning: does not synchronize the deque!
|
| 48 |
+
"""
|
| 49 |
+
if not is_dist_avail_and_initialized():
|
| 50 |
+
return
|
| 51 |
+
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
|
| 52 |
+
dist.barrier()
|
| 53 |
+
dist.all_reduce(t)
|
| 54 |
+
t = t.tolist()
|
| 55 |
+
self.count = int(t[0])
|
| 56 |
+
self.total = t[1]
|
| 57 |
+
|
| 58 |
+
@property
|
| 59 |
+
def median(self):
|
| 60 |
+
d = torch.tensor(list(self.deque))
|
| 61 |
+
return d.median().item()
|
| 62 |
+
|
| 63 |
+
@property
|
| 64 |
+
def avg(self):
|
| 65 |
+
d = torch.tensor(list(self.deque), dtype=torch.float32)
|
| 66 |
+
return d.mean().item()
|
| 67 |
+
|
| 68 |
+
@property
|
| 69 |
+
def global_avg(self):
|
| 70 |
+
return self.total / self.count
|
| 71 |
+
|
| 72 |
+
@property
|
| 73 |
+
def max(self):
|
| 74 |
+
return max(self.deque)
|
| 75 |
+
|
| 76 |
+
@property
|
| 77 |
+
def value(self):
|
| 78 |
+
return self.deque[-1]
|
| 79 |
+
|
| 80 |
+
def __str__(self):
|
| 81 |
+
return self.fmt.format(
|
| 82 |
+
median=self.median,
|
| 83 |
+
avg=self.avg,
|
| 84 |
+
global_avg=self.global_avg,
|
| 85 |
+
max=self.max,
|
| 86 |
+
value=self.value)
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
class MetricLogger(object):
|
| 90 |
+
def __init__(self, delimiter="\t"):
|
| 91 |
+
self.meters = defaultdict(SmoothedValue)
|
| 92 |
+
self.delimiter = delimiter
|
| 93 |
+
|
| 94 |
+
def update(self, **kwargs):
|
| 95 |
+
for k, v in kwargs.items():
|
| 96 |
+
if v is None:
|
| 97 |
+
continue
|
| 98 |
+
if isinstance(v, torch.Tensor):
|
| 99 |
+
v = v.item()
|
| 100 |
+
assert isinstance(v, (float, int))
|
| 101 |
+
self.meters[k].update(v)
|
| 102 |
+
|
| 103 |
+
def __getattr__(self, attr):
|
| 104 |
+
if attr in self.meters:
|
| 105 |
+
return self.meters[attr]
|
| 106 |
+
if attr in self.__dict__:
|
| 107 |
+
return self.__dict__[attr]
|
| 108 |
+
raise AttributeError("'{}' object has no attribute '{}'".format(
|
| 109 |
+
type(self).__name__, attr))
|
| 110 |
+
|
| 111 |
+
def __str__(self):
|
| 112 |
+
loss_str = []
|
| 113 |
+
for name, meter in self.meters.items():
|
| 114 |
+
loss_str.append(
|
| 115 |
+
"{}: {}".format(name, str(meter))
|
| 116 |
+
)
|
| 117 |
+
return self.delimiter.join(loss_str)
|
| 118 |
+
|
| 119 |
+
def synchronize_between_processes(self):
|
| 120 |
+
for meter in self.meters.values():
|
| 121 |
+
meter.synchronize_between_processes()
|
| 122 |
+
|
| 123 |
+
def add_meter(self, name, meter):
|
| 124 |
+
self.meters[name] = meter
|
| 125 |
+
|
| 126 |
+
def log_every(self, iterable, print_freq, header=None):
|
| 127 |
+
i = 0
|
| 128 |
+
if not header:
|
| 129 |
+
header = ''
|
| 130 |
+
start_time = time.time()
|
| 131 |
+
end = time.time()
|
| 132 |
+
iter_time = SmoothedValue(fmt='{avg:.4f}')
|
| 133 |
+
data_time = SmoothedValue(fmt='{avg:.4f}')
|
| 134 |
+
space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
|
| 135 |
+
log_msg = [
|
| 136 |
+
header,
|
| 137 |
+
'[{0' + space_fmt + '}/{1}]',
|
| 138 |
+
'eta: {eta}',
|
| 139 |
+
'{meters}',
|
| 140 |
+
'time: {time}',
|
| 141 |
+
'data: {data}'
|
| 142 |
+
]
|
| 143 |
+
if torch.cuda.is_available():
|
| 144 |
+
log_msg.append('max mem: {memory:.0f}')
|
| 145 |
+
log_msg = self.delimiter.join(log_msg)
|
| 146 |
+
MB = 1024.0 * 1024.0
|
| 147 |
+
for obj in iterable:
|
| 148 |
+
data_time.update(time.time() - end)
|
| 149 |
+
yield obj
|
| 150 |
+
iter_time.update(time.time() - end)
|
| 151 |
+
if i % print_freq == 0 or i == len(iterable) - 1:
|
| 152 |
+
eta_seconds = iter_time.global_avg * (len(iterable) - i)
|
| 153 |
+
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
|
| 154 |
+
if torch.cuda.is_available():
|
| 155 |
+
print(log_msg.format(
|
| 156 |
+
i, len(iterable), eta=eta_string,
|
| 157 |
+
meters=str(self),
|
| 158 |
+
time=str(iter_time), data=str(data_time),
|
| 159 |
+
memory=torch.cuda.max_memory_allocated() / MB))
|
| 160 |
+
else:
|
| 161 |
+
print(log_msg.format(
|
| 162 |
+
i, len(iterable), eta=eta_string,
|
| 163 |
+
meters=str(self),
|
| 164 |
+
time=str(iter_time), data=str(data_time)))
|
| 165 |
+
i += 1
|
| 166 |
+
end = time.time()
|
| 167 |
+
total_time = time.time() - start_time
|
| 168 |
+
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
|
| 169 |
+
print('{} Total time: {} ({:.4f} s / it)'.format(
|
| 170 |
+
header, total_time_str, total_time / len(iterable)))
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
def setup_for_distributed(is_master):
|
| 174 |
+
"""
|
| 175 |
+
This function disables printing when not in master process
|
| 176 |
+
"""
|
| 177 |
+
builtin_print = builtins.print
|
| 178 |
+
|
| 179 |
+
def print(*args, **kwargs):
|
| 180 |
+
force = kwargs.pop('force', False)
|
| 181 |
+
force = force or (get_world_size() > 8)
|
| 182 |
+
if is_master or force:
|
| 183 |
+
now = datetime.datetime.now().time()
|
| 184 |
+
builtin_print('[{}] '.format(now), end='') # print with time stamp
|
| 185 |
+
builtin_print(*args, **kwargs)
|
| 186 |
+
|
| 187 |
+
builtins.print = print
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
def is_dist_avail_and_initialized():
|
| 191 |
+
if not dist.is_available():
|
| 192 |
+
return False
|
| 193 |
+
if not dist.is_initialized():
|
| 194 |
+
return False
|
| 195 |
+
return True
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
def get_world_size():
|
| 199 |
+
if not is_dist_avail_and_initialized():
|
| 200 |
+
return 1
|
| 201 |
+
return dist.get_world_size()
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
def get_rank():
|
| 205 |
+
if not is_dist_avail_and_initialized():
|
| 206 |
+
return 0
|
| 207 |
+
return dist.get_rank()
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
def is_main_process():
|
| 211 |
+
return get_rank() == 0
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
def save_on_master(*args, **kwargs):
|
| 215 |
+
if is_main_process():
|
| 216 |
+
torch.save(*args, **kwargs)
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
def init_distributed_mode(args):
|
| 220 |
+
if args.dist_on_itp:
|
| 221 |
+
args.rank = int(os.environ['OMPI_COMM_WORLD_RANK'])
|
| 222 |
+
args.world_size = int(os.environ['OMPI_COMM_WORLD_SIZE'])
|
| 223 |
+
args.gpu = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])
|
| 224 |
+
args.dist_url = "tcp://%s:%s" % (os.environ['MASTER_ADDR'], os.environ['MASTER_PORT'])
|
| 225 |
+
os.environ['LOCAL_RANK'] = str(args.gpu)
|
| 226 |
+
os.environ['RANK'] = str(args.rank)
|
| 227 |
+
os.environ['WORLD_SIZE'] = str(args.world_size)
|
| 228 |
+
# ["RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT", "LOCAL_RANK"]
|
| 229 |
+
elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
|
| 230 |
+
args.rank = int(os.environ["RANK"])
|
| 231 |
+
args.world_size = int(os.environ['WORLD_SIZE'])
|
| 232 |
+
args.gpu = int(os.environ['LOCAL_RANK'])
|
| 233 |
+
elif 'SLURM_PROCID' in os.environ:
|
| 234 |
+
args.rank = int(os.environ['SLURM_PROCID'])
|
| 235 |
+
args.gpu = args.rank % torch.cuda.device_count()
|
| 236 |
+
else:
|
| 237 |
+
print('Not using distributed mode')
|
| 238 |
+
setup_for_distributed(is_master=True) # hack
|
| 239 |
+
args.distributed = False
|
| 240 |
+
return
|
| 241 |
+
|
| 242 |
+
args.distributed = True
|
| 243 |
+
|
| 244 |
+
print("GPU::", args.gpu)
|
| 245 |
+
torch.cuda.set_device(args.gpu)
|
| 246 |
+
args.dist_backend = 'nccl'
|
| 247 |
+
print('| distributed init (rank {}): {}, gpu {}'.format(
|
| 248 |
+
args.rank, args.dist_url, args.gpu), flush=True)
|
| 249 |
+
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
|
| 250 |
+
world_size=args.world_size, rank=args.rank)
|
| 251 |
+
torch.distributed.barrier()
|
| 252 |
+
setup_for_distributed(args.rank == 0)
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
class NativeScalerWithGradNormCount:
|
| 256 |
+
state_dict_key = "amp_scaler"
|
| 257 |
+
|
| 258 |
+
def __init__(self):
|
| 259 |
+
self._scaler = torch.cuda.amp.GradScaler()
|
| 260 |
+
|
| 261 |
+
def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True):
|
| 262 |
+
self._scaler.scale(loss).backward(create_graph=create_graph)
|
| 263 |
+
if update_grad:
|
| 264 |
+
if clip_grad is not None:
|
| 265 |
+
assert parameters is not None
|
| 266 |
+
self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place
|
| 267 |
+
norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad)
|
| 268 |
+
else:
|
| 269 |
+
self._scaler.unscale_(optimizer)
|
| 270 |
+
norm = get_grad_norm_(parameters)
|
| 271 |
+
self._scaler.step(optimizer)
|
| 272 |
+
self._scaler.update()
|
| 273 |
+
else:
|
| 274 |
+
norm = None
|
| 275 |
+
return norm
|
| 276 |
+
|
| 277 |
+
def state_dict(self):
|
| 278 |
+
return self._scaler.state_dict()
|
| 279 |
+
|
| 280 |
+
def load_state_dict(self, state_dict):
|
| 281 |
+
self._scaler.load_state_dict(state_dict)
|
| 282 |
+
|
| 283 |
+
|
| 284 |
+
def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor:
|
| 285 |
+
if isinstance(parameters, torch.Tensor):
|
| 286 |
+
parameters = [parameters]
|
| 287 |
+
parameters = [p for p in parameters if p.grad is not None]
|
| 288 |
+
norm_type = float(norm_type)
|
| 289 |
+
if len(parameters) == 0:
|
| 290 |
+
return torch.tensor(0.)
|
| 291 |
+
device = parameters[0].grad.device
|
| 292 |
+
if norm_type == inf:
|
| 293 |
+
total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters)
|
| 294 |
+
else:
|
| 295 |
+
total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type)
|
| 296 |
+
return total_norm
|
| 297 |
+
|
| 298 |
+
|
| 299 |
+
def save_model(args, epoch, model, model_without_ddp, optimizer, loss_scaler):
|
| 300 |
+
output_dir = Path(args.output_dir)
|
| 301 |
+
epoch_name = str(epoch)
|
| 302 |
+
if loss_scaler is not None:
|
| 303 |
+
checkpoint_paths = [output_dir / ('checkpoint.pth')]
|
| 304 |
+
for checkpoint_path in checkpoint_paths:
|
| 305 |
+
to_save = {
|
| 306 |
+
'model': model_without_ddp.state_dict(),
|
| 307 |
+
'optimizer': optimizer.state_dict(),
|
| 308 |
+
'epoch': epoch,
|
| 309 |
+
'scaler': loss_scaler.state_dict(),
|
| 310 |
+
'args': args,
|
| 311 |
+
}
|
| 312 |
+
|
| 313 |
+
save_on_master(to_save, checkpoint_path)
|
| 314 |
+
else:
|
| 315 |
+
client_state = {'epoch': epoch}
|
| 316 |
+
model.save_checkpoint(save_dir=args.output_dir, tag="checkpoint", client_state=client_state)
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
def load_model(model_without_ddp, optimizer, loss_scaler, path):
|
| 320 |
+
if path.startswith('https'):
|
| 321 |
+
checkpoint = torch.hub.load_state_dict_from_url(
|
| 322 |
+
path, map_location='cpu', check_hash=True)
|
| 323 |
+
else:
|
| 324 |
+
checkpoint = torch.load(path, map_location='cpu')
|
| 325 |
+
new_checkpoint = {}
|
| 326 |
+
if optimizer is not None:
|
| 327 |
+
optimizer.load_state_dict(checkpoint['optimizer'])
|
| 328 |
+
if loss_scaler is not None:
|
| 329 |
+
loss_scaler.load_state_dict(checkpoint['scaler'])
|
| 330 |
+
print(checkpoint.keys())
|
| 331 |
+
new_ckpt = {}
|
| 332 |
+
for key, value in checkpoint['model'].items():
|
| 333 |
+
key = key.replace("module.", "")
|
| 334 |
+
new_ckpt[key] = value
|
| 335 |
+
|
| 336 |
+
load_result = model_without_ddp.load_state_dict(new_ckpt, strict=True)
|
| 337 |
+
assert len(load_result.unexpected_keys) == 0, f"Unexpected keys: {load_result.unexpected_keys}"
|
| 338 |
+
print("Load checkpoint %s" % path)
|
| 339 |
+
return checkpoint['epoch']
|
| 340 |
+
|
| 341 |
+
|
| 342 |
+
def all_reduce_mean(x):
|
| 343 |
+
world_size = get_world_size()
|
| 344 |
+
if world_size > 1:
|
| 345 |
+
x_reduce = torch.tensor(x).cuda()
|
| 346 |
+
dist.all_reduce(x_reduce)
|
| 347 |
+
x_reduce /= world_size
|
| 348 |
+
return x_reduce.item()
|
| 349 |
+
else:
|
| 350 |
+
return x
|
| 351 |
+
|
| 352 |
+
|
| 353 |
+
def add_weight_decay(model, weight_decay=1e-5, skip_list=()):
|
| 354 |
+
decay = []
|
| 355 |
+
no_decay = []
|
| 356 |
+
for name, param in model.named_parameters():
|
| 357 |
+
if not param.requires_grad:
|
| 358 |
+
continue # frozen weights
|
| 359 |
+
if len(param.shape) == 1 or name.endswith(".bias") or name in skip_list:
|
| 360 |
+
no_decay.append(param)
|
| 361 |
+
else:
|
| 362 |
+
decay.append(param)
|
| 363 |
+
return [
|
| 364 |
+
{'params': no_decay, 'weight_decay': 0.},
|
| 365 |
+
{'params': decay, 'weight_decay': weight_decay}]
|
| 366 |
+
|
| 367 |
+
|
| 368 |
+
class DistributedSubEpochSampler(torch.utils.data.Sampler):
|
| 369 |
+
|
| 370 |
+
def __init__(self, dataset, num_replicas, rank, shuffle, split_epoch=1, seed=42):
|
| 371 |
+
self.dataset = dataset
|
| 372 |
+
self.num_replicas = num_replicas
|
| 373 |
+
self.rank = rank
|
| 374 |
+
self.shuffle = shuffle
|
| 375 |
+
self.split_epoch = split_epoch
|
| 376 |
+
self.seed = seed
|
| 377 |
+
|
| 378 |
+
self.num_samples = len(dataset) // (num_replicas * split_epoch)
|
| 379 |
+
|
| 380 |
+
def __len__(self):
|
| 381 |
+
return self.num_samples
|
| 382 |
+
|
| 383 |
+
def __iter__(self):
|
| 384 |
+
if self.shuffle:
|
| 385 |
+
# deterministically shuffle based on epoch and seed
|
| 386 |
+
g = torch.Generator()
|
| 387 |
+
g.manual_seed(self.seed + self.epoch // self.split_epoch)
|
| 388 |
+
indices = torch.randperm(len(self.dataset), generator=g).tolist() # type: ignore[arg-type]
|
| 389 |
+
else:
|
| 390 |
+
indices = list(range(len(self.dataset))) # type: ignore[arg-type]
|
| 391 |
+
|
| 392 |
+
indices = indices[self.rank * self.split_epoch + self.epoch % self.split_epoch::self.num_replicas * self.split_epoch]
|
| 393 |
+
assert len(indices) >= self.num_samples
|
| 394 |
+
indices = indices[:self.num_samples]
|
| 395 |
+
|
| 396 |
+
return iter(indices)
|
| 397 |
+
|
| 398 |
+
def set_epoch(self, epoch):
|
| 399 |
+
self.epoch = epoch
|
| 400 |
+
|
| 401 |
+
def download(url: str, root: str):
|
| 402 |
+
os.makedirs(root, exist_ok=True)
|
| 403 |
+
filename = os.path.basename(url)
|
| 404 |
+
download_target = os.path.join(root, filename)
|
| 405 |
+
|
| 406 |
+
if os.path.exists(download_target) and not os.path.isfile(download_target):
|
| 407 |
+
raise RuntimeError(f"{download_target} exists and is not a regular file")
|
| 408 |
+
|
| 409 |
+
if os.path.isfile(download_target):
|
| 410 |
+
return download_target
|
| 411 |
+
|
| 412 |
+
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
|
| 413 |
+
with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop:
|
| 414 |
+
while True:
|
| 415 |
+
buffer = source.read(8192)
|
| 416 |
+
if not buffer:
|
| 417 |
+
break
|
| 418 |
+
output.write(buffer)
|
| 419 |
+
loop.update(len(buffer))
|
| 420 |
+
|
| 421 |
+
|
| 422 |
+
return download_target
|