Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- book_train.csv +0 -0
- stri.py +65 -0
book_train.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
stri.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
import pandas as pd
|
| 5 |
+
from transformers import AutoTokenizer, AutoModel
|
| 6 |
+
|
| 7 |
+
st.title("Книжные рекомендации")
|
| 8 |
+
|
| 9 |
+
# Загрузка модели и токенизатора
|
| 10 |
+
model_name = "cointegrated/rubert-tiny2"
|
| 11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 12 |
+
model = AutoModel.from_pretrained(model_name, output_hidden_states=True)
|
| 13 |
+
|
| 14 |
+
# Загрузка датасета и аннотаций к книгам
|
| 15 |
+
books = pd.read_csv('book_train.csv')
|
| 16 |
+
annot = books['annotation']
|
| 17 |
+
|
| 18 |
+
# Предобработка аннотаций и получение эмбеддингов
|
| 19 |
+
embeddings = []
|
| 20 |
+
for annotation in annot:
|
| 21 |
+
annotation_tokens = tokenizer.encode_plus(
|
| 22 |
+
annotation,
|
| 23 |
+
add_special_tokens=True,
|
| 24 |
+
max_length=128,
|
| 25 |
+
pad_to_max_length=True,
|
| 26 |
+
return_tensors='pt'
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
with torch.no_grad():
|
| 30 |
+
outputs = model(**annotation_tokens)
|
| 31 |
+
hidden_states = outputs.hidden_states
|
| 32 |
+
last_hidden_state = hidden_states[-2]
|
| 33 |
+
embeddings.append(torch.mean(last_hidden_state, dim=1).squeeze())
|
| 34 |
+
|
| 35 |
+
# Получение эмбеддинга запроса от пользователя
|
| 36 |
+
query = st.text_input("Введите запрос")
|
| 37 |
+
query_tokens = tokenizer.encode_plus(
|
| 38 |
+
query,
|
| 39 |
+
add_special_tokens=True,
|
| 40 |
+
max_length=128,
|
| 41 |
+
pad_to_max_length=True,
|
| 42 |
+
return_tensors='pt'
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
# Проверка, был ли введен запрос
|
| 46 |
+
if query:
|
| 47 |
+
with torch.no_grad():
|
| 48 |
+
query_outputs = model(**query_tokens)
|
| 49 |
+
query_hidden_states = query_outputs.hidden_states
|
| 50 |
+
query_last_hidden_state = query_hidden_states[-2]
|
| 51 |
+
query_embedding = torch.mean(query_last_hidden_state, dim=1).squeeze()
|
| 52 |
+
|
| 53 |
+
# Вычисление косинусного расстояния между эмбеддингом запроса и каждой аннотацией
|
| 54 |
+
cosine_similarities = torch.nn.functional.cosine_similarity(
|
| 55 |
+
query_embedding.unsqueeze(0),
|
| 56 |
+
torch.stack(embeddings)
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
cosine_similarities = cosine_similarities.numpy()
|
| 60 |
+
|
| 61 |
+
indices = np.argsort(cosine_similarities)[::-1]
|
| 62 |
+
|
| 63 |
+
st.header("Рекомендации")
|
| 64 |
+
for i in indices[:10]:
|
| 65 |
+
st.write(books['title'][i])
|