Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import re | |
| import time | |
| from io import BytesIO | |
| import uuid | |
| from dataclasses import dataclass | |
| from glob import iglob | |
| import argparse | |
| from einops import rearrange | |
| from fire import Fire | |
| from PIL import ExifTags, Image | |
| import spaces | |
| import torch | |
| import torch.nn.functional as F | |
| import gradio as gr | |
| import numpy as np | |
| from transformers import pipeline | |
| from flux.sampling import denoise, get_schedule, prepare, unpack | |
| from flux.util import (configs, embed_watermark, load_ae, load_clip, load_flow_model, load_t5) | |
| from huggingface_hub import login | |
| login(token=os.getenv('Token')) | |
| import torch | |
| # device = torch.cuda.current_device() | |
| # print("!!!!!!!!!!!!device!!!!!!!!!!!!!!",device) | |
| # total_memory = torch.cuda.get_device_properties(device).total_memory | |
| # allocated_memory = torch.cuda.memory_allocated(device) | |
| # reserved_memory = torch.cuda.memory_reserved(device) | |
| # print(f"Total memory: {total_memory / 1024**2:.2f} MB") | |
| # print(f"Allocated memory: {allocated_memory / 1024**2:.2f} MB") | |
| # print(f"Reserved memory: {reserved_memory / 1024**2:.2f} MB") | |
| global device = "cuda" if torch.cuda.is_available() else "cpu" | |
| global name = 'flux-dev' | |
| global ae = load_ae(name, device) | |
| global t5 = load_t5(device, max_length=256 if name == "flux-schnell" else 512) | |
| global clip = load_clip(device) | |
| global model = load_flow_model(name, device=device) | |
| print("!!!!!!!!!!!!device!!!!!!!!!!!!!!",device) | |
| print("!!!!!!!!self.t5!!!!!!",next(t5.parameters()).device) | |
| print("!!!!!!!!self.clip!!!!!!",next(clip.parameters()).device) | |
| print("!!!!!!!!self.model!!!!!!",next(model.parameters()).device) | |
| class SamplingOptions: | |
| source_prompt: str | |
| target_prompt: str | |
| # prompt: str | |
| width: int | |
| height: int | |
| num_steps: int | |
| guidance: float | |
| seed: int | None | |
| global offload = False | |
| global name = "flux-dev" | |
| global is_schnell = False | |
| global feature_path = 'feature' | |
| global output_dir = 'result' | |
| global add_sampling_metadata = True | |
| def encode(init_image, torch_device): | |
| init_image = torch.from_numpy(init_image).permute(2, 0, 1).float() / 127.5 - 1 | |
| init_image = init_image.unsqueeze(0) | |
| init_image = init_image.to(torch_device) | |
| ae = ae.cuda() | |
| with torch.no_grad(): | |
| init_image = ae.encode(init_image.to()).to(torch.bfloat16) | |
| return init_image | |
| def edit(init_image, source_prompt, target_prompt, num_steps, inject_step, guidance, seed): | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| torch.cuda.empty_cache() | |
| seed = None | |
| # if seed == -1: | |
| # seed = None | |
| shape = init_image.shape | |
| new_h = shape[0] if shape[0] % 16 == 0 else shape[0] - shape[0] % 16 | |
| new_w = shape[1] if shape[1] % 16 == 0 else shape[1] - shape[1] % 16 | |
| init_image = init_image[:new_h, :new_w, :] | |
| width, height = init_image.shape[0], init_image.shape[1] | |
| init_image = encode(init_image, device) | |
| print(init_image.shape) | |
| rng = torch.Generator(device="cpu") | |
| opts = SamplingOptions( | |
| source_prompt=source_prompt, | |
| target_prompt=target_prompt, | |
| width=width, | |
| height=height, | |
| num_steps=num_steps, | |
| guidance=guidance, | |
| seed=seed, | |
| ) | |
| if opts.seed is None: | |
| opts.seed = torch.Generator(device="cpu").seed() | |
| print(f"Generating with seed {opts.seed}:\n{opts.source_prompt}") | |
| t0 = time.perf_counter() | |
| opts.seed = None | |
| #############inverse####################### | |
| info = {} | |
| info['feature'] = {} | |
| info['inject_step'] = inject_step | |
| print("!!!!!!!!!!!!device!!!!!!!!!!!!!!",device) | |
| print("!!!!!!!!self.t5!!!!!!",next(t5.parameters()).device) | |
| print("!!!!!!!!self.clip!!!!!!",next(clip.parameters()).device) | |
| print("!!!!!!!!self.model!!!!!!",next(model.parameters()).device) | |
| # device = torch.cuda.current_device() | |
| # total_memory = torch.cuda.get_device_properties(device).total_memory | |
| # allocated_memory = torch.cuda.memory_allocated(device) | |
| # reserved_memory = torch.cuda.memory_reserved(device) | |
| # print(f"Total memory: {total_memory / 1024**2:.2f} MB") | |
| # print(f"Allocated memory: {allocated_memory / 1024**2:.2f} MB") | |
| # print(f"Reserved memory: {reserved_memory / 1024**2:.2f} MB") | |
| with torch.no_grad(): | |
| inp = prepare(t5, clip, init_image, prompt=opts.source_prompt) | |
| inp_target = prepare(t5, clip, init_image, prompt=opts.target_prompt) | |
| timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(name != "flux-schnell")) | |
| # inversion initial noise | |
| with torch.no_grad(): | |
| z, info = denoise(model, **inp, timesteps=timesteps, guidance=1, inverse=True, info=info) | |
| inp_target["img"] = z | |
| timesteps = get_schedule(opts.num_steps, inp_target["img"].shape[1], shift=(name != "flux-schnell")) | |
| # denoise initial noise | |
| x, _ = denoise(model, **inp_target, timesteps=timesteps, guidance=guidance, inverse=False, info=info) | |
| # decode latents to pixel space | |
| x = unpack(x.float(), opts.width, opts.height) | |
| output_name = os.path.join(output_dir, "img_{idx}.jpg") | |
| if not os.path.exists(output_dir): | |
| os.makedirs(output_dir) | |
| idx = 0 | |
| else: | |
| fns = [fn for fn in iglob(output_name.format(idx="*")) if re.search(r"img_[0-9]+\.jpg$", fn)] | |
| if len(fns) > 0: | |
| idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1 | |
| else: | |
| idx = 0 | |
| with torch.autocast(device_type=device.type, dtype=torch.bfloat16): | |
| x = ae.decode(x) | |
| if torch.cuda.is_available(): | |
| torch.cuda.synchronize() | |
| t1 = time.perf_counter() | |
| fn = output_name.format(idx=idx) | |
| print(f"Done in {t1 - t0:.1f}s. Saving {fn}") | |
| # bring into PIL format and save | |
| x = x.clamp(-1, 1) | |
| x = embed_watermark(x.float()) | |
| x = rearrange(x[0], "c h w -> h w c") | |
| img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy()) | |
| exif_data = Image.Exif() | |
| exif_data[ExifTags.Base.Software] = "AI generated;txt2img;flux" | |
| exif_data[ExifTags.Base.Make] = "Black Forest Labs" | |
| exif_data[ExifTags.Base.Model] = name | |
| if add_sampling_metadata: | |
| exif_data[ExifTags.Base.ImageDescription] = source_prompt | |
| img.save(fn, exif=exif_data, quality=95, subsampling=0) | |
| print("End Edit") | |
| return img | |
| def create_demo(model_name: str, device: str = "cuda:0" if torch.cuda.is_available() else "cpu", offload: bool = False): | |
| is_schnell = model_name == "flux-schnell" | |
| with gr.Blocks() as demo: | |
| gr.Markdown(f"# RF-Edit Demo (FLUX for image editing)") | |
| with gr.Row(): | |
| with gr.Column(): | |
| # source_prompt = gr.Textbox(label="Source Prompt", value="") | |
| # target_prompt = gr.Textbox(label="Target Prompt", value="") | |
| source_prompt = gr.Text( | |
| label="Source Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your source prompt", | |
| container=False, | |
| value="" | |
| ) | |
| target_prompt = gr.Text( | |
| label="Target Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your target prompt", | |
| container=False, | |
| value="" | |
| ) | |
| init_image = gr.Image(label="Input Image", visible=True) | |
| generate_btn = gr.Button("Generate") | |
| with gr.Column(): | |
| with gr.Accordion("Advanced Options", open=True): | |
| num_steps = gr.Slider(1, 30, 25, step=1, label="Number of steps") | |
| inject_step = gr.Slider(1, 15, 5, step=1, label="Number of inject steps") | |
| guidance = gr.Slider(1.0, 10.0, 2, step=0.1, label="Guidance", interactive=not is_schnell) | |
| # seed = gr.Textbox(0, label="Seed (-1 for random)", visible=False) | |
| # add_sampling_metadata = gr.Checkbox(label="Add sampling parameters to metadata?", value=False) | |
| output_image = gr.Image(label="Generated Image") | |
| generate_btn.click( | |
| fn=edit, | |
| inputs=[init_image, source_prompt, target_prompt, num_steps, inject_step, guidance], | |
| outputs=[output_image] | |
| ) | |
| return demo | |
| # if __name__ == "__main__": | |
| # import argparse | |
| # parser = argparse.ArgumentParser(description="Flux") | |
| # parser.add_argument("--name", type=str, default="flux-dev", choices=list(configs.keys()), help="Model name") | |
| # parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu", help="Device to use") | |
| # parser.add_argument("--offload", action="store_true", help="Offload model to CPU when not in use") | |
| # parser.add_argument("--share", action="store_true", help="Create a public link to your demo") | |
| # parser.add_argument("--port", type=int, default=41035) | |
| # args = parser.parse_args() | |
| demo = create_demo("flux-dev", "cuda") | |
| demo.launch() |