Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -22,29 +22,8 @@ from flux.util import (configs, embed_watermark, load_ae, load_clip, load_flow_m
|
|
| 22 |
from huggingface_hub import login
|
| 23 |
login(token=os.getenv('Token'))
|
| 24 |
|
| 25 |
-
|
| 26 |
import torch
|
| 27 |
|
| 28 |
-
# device = torch.cuda.current_device()
|
| 29 |
-
# print("!!!!!!!!!!!!device!!!!!!!!!!!!!!",device)
|
| 30 |
-
# total_memory = torch.cuda.get_device_properties(device).total_memory
|
| 31 |
-
# allocated_memory = torch.cuda.memory_allocated(device)
|
| 32 |
-
# reserved_memory = torch.cuda.memory_reserved(device)
|
| 33 |
-
|
| 34 |
-
# print(f"Total memory: {total_memory / 1024**2:.2f} MB")
|
| 35 |
-
# print(f"Allocated memory: {allocated_memory / 1024**2:.2f} MB")
|
| 36 |
-
# print(f"Reserved memory: {reserved_memory / 1024**2:.2f} MB")
|
| 37 |
-
|
| 38 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 39 |
-
name = 'flux-dev'
|
| 40 |
-
ae = load_ae(name, device)
|
| 41 |
-
t5 = load_t5(device, max_length=256 if name == "flux-schnell" else 512)
|
| 42 |
-
clip = load_clip(device)
|
| 43 |
-
model = load_flow_model(name, device=device)
|
| 44 |
-
print("!!!!!!!!!!!!device!!!!!!!!!!!!!!",device)
|
| 45 |
-
print("!!!!!!!!self.t5!!!!!!",next(t5.parameters()).device)
|
| 46 |
-
print("!!!!!!!!self.clip!!!!!!",next(clip.parameters()).device)
|
| 47 |
-
print("!!!!!!!!self.model!!!!!!",next(model.parameters()).device)
|
| 48 |
|
| 49 |
@dataclass
|
| 50 |
class SamplingOptions:
|
|
@@ -57,27 +36,29 @@ class SamplingOptions:
|
|
| 57 |
guidance: float
|
| 58 |
seed: int | None
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
offload = False
|
| 63 |
-
name = "flux-dev"
|
| 64 |
-
is_schnell = False
|
| 65 |
-
feature_path = 'feature'
|
| 66 |
-
output_dir = 'result'
|
| 67 |
-
add_sampling_metadata = True
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
@torch.inference_mode()
|
| 72 |
def encode(init_image, torch_device):
|
| 73 |
init_image = torch.from_numpy(init_image).permute(2, 0, 1).float() / 127.5 - 1
|
| 74 |
init_image = init_image.unsqueeze(0)
|
| 75 |
init_image = init_image.to(torch_device)
|
| 76 |
-
ae = ae.cuda()
|
| 77 |
with torch.no_grad():
|
| 78 |
init_image = ae.encode(init_image.to()).to(torch.bfloat16)
|
| 79 |
return init_image
|
| 80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
@spaces.GPU(duration=120)
|
| 82 |
@torch.inference_mode()
|
| 83 |
def edit(init_image, source_prompt, target_prompt, num_steps, inject_step, guidance, seed):
|
|
@@ -85,8 +66,6 @@ def edit(init_image, source_prompt, target_prompt, num_steps, inject_step, guida
|
|
| 85 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 86 |
torch.cuda.empty_cache()
|
| 87 |
seed = None
|
| 88 |
-
# if seed == -1:
|
| 89 |
-
# seed = None
|
| 90 |
|
| 91 |
shape = init_image.shape
|
| 92 |
|
|
@@ -97,8 +76,12 @@ def edit(init_image, source_prompt, target_prompt, num_steps, inject_step, guida
|
|
| 97 |
|
| 98 |
width, height = init_image.shape[0], init_image.shape[1]
|
| 99 |
|
| 100 |
-
|
| 101 |
-
init_image =
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
print(init_image.shape)
|
| 104 |
|
|
@@ -125,26 +108,12 @@ def edit(init_image, source_prompt, target_prompt, num_steps, inject_step, guida
|
|
| 125 |
info['feature'] = {}
|
| 126 |
info['inject_step'] = inject_step
|
| 127 |
|
| 128 |
-
print("!!!!!!!!!!!!device!!!!!!!!!!!!!!",device)
|
| 129 |
-
print("!!!!!!!!self.t5!!!!!!",next(t5.parameters()).device)
|
| 130 |
-
print("!!!!!!!!self.clip!!!!!!",next(clip.parameters()).device)
|
| 131 |
-
print("!!!!!!!!self.model!!!!!!",next(model.parameters()).device)
|
| 132 |
-
|
| 133 |
-
# device = torch.cuda.current_device()
|
| 134 |
-
# total_memory = torch.cuda.get_device_properties(device).total_memory
|
| 135 |
-
# allocated_memory = torch.cuda.memory_allocated(device)
|
| 136 |
-
# reserved_memory = torch.cuda.memory_reserved(device)
|
| 137 |
-
|
| 138 |
-
# print(f"Total memory: {total_memory / 1024**2:.2f} MB")
|
| 139 |
-
# print(f"Allocated memory: {allocated_memory / 1024**2:.2f} MB")
|
| 140 |
-
# print(f"Reserved memory: {reserved_memory / 1024**2:.2f} MB")
|
| 141 |
-
|
| 142 |
with torch.no_grad():
|
| 143 |
inp = prepare(t5, clip, init_image, prompt=opts.source_prompt)
|
| 144 |
inp_target = prepare(t5, clip, init_image, prompt=opts.target_prompt)
|
| 145 |
timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(name != "flux-schnell"))
|
| 146 |
|
| 147 |
-
|
| 148 |
with torch.no_grad():
|
| 149 |
z, info = denoise(model, **inp, timesteps=timesteps, guidance=1, inverse=True, info=info)
|
| 150 |
|
|
|
|
| 22 |
from huggingface_hub import login
|
| 23 |
login(token=os.getenv('Token'))
|
| 24 |
|
|
|
|
| 25 |
import torch
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
@dataclass
|
| 29 |
class SamplingOptions:
|
|
|
|
| 36 |
guidance: float
|
| 37 |
seed: int | None
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
@torch.inference_mode()
|
| 40 |
def encode(init_image, torch_device):
|
| 41 |
init_image = torch.from_numpy(init_image).permute(2, 0, 1).float() / 127.5 - 1
|
| 42 |
init_image = init_image.unsqueeze(0)
|
| 43 |
init_image = init_image.to(torch_device)
|
|
|
|
| 44 |
with torch.no_grad():
|
| 45 |
init_image = ae.encode(init_image.to()).to(torch.bfloat16)
|
| 46 |
return init_image
|
| 47 |
|
| 48 |
+
|
| 49 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 50 |
+
name = 'flux-dev'
|
| 51 |
+
ae = load_ae(name, device)
|
| 52 |
+
t5 = load_t5(device, max_length=256 if name == "flux-schnell" else 512)
|
| 53 |
+
clip = load_clip(device)
|
| 54 |
+
model = load_flow_model(name, device=device)
|
| 55 |
+
offload = False
|
| 56 |
+
name = "flux-dev"
|
| 57 |
+
is_schnell = False
|
| 58 |
+
feature_path = 'feature'
|
| 59 |
+
output_dir = 'result'
|
| 60 |
+
add_sampling_metadata = True
|
| 61 |
+
|
| 62 |
@spaces.GPU(duration=120)
|
| 63 |
@torch.inference_mode()
|
| 64 |
def edit(init_image, source_prompt, target_prompt, num_steps, inject_step, guidance, seed):
|
|
|
|
| 66 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 67 |
torch.cuda.empty_cache()
|
| 68 |
seed = None
|
|
|
|
|
|
|
| 69 |
|
| 70 |
shape = init_image.shape
|
| 71 |
|
|
|
|
| 76 |
|
| 77 |
width, height = init_image.shape[0], init_image.shape[1]
|
| 78 |
|
| 79 |
+
|
| 80 |
+
init_image = torch.from_numpy(init_image).permute(2, 0, 1).float() / 127.5 - 1
|
| 81 |
+
init_image = init_image.unsqueeze(0)
|
| 82 |
+
init_image = init_image.to(device)
|
| 83 |
+
with torch.no_grad():
|
| 84 |
+
init_image = ae.encode(init_image.to()).to(torch.bfloat16)
|
| 85 |
|
| 86 |
print(init_image.shape)
|
| 87 |
|
|
|
|
| 108 |
info['feature'] = {}
|
| 109 |
info['inject_step'] = inject_step
|
| 110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
with torch.no_grad():
|
| 112 |
inp = prepare(t5, clip, init_image, prompt=opts.source_prompt)
|
| 113 |
inp_target = prepare(t5, clip, init_image, prompt=opts.target_prompt)
|
| 114 |
timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(name != "flux-schnell"))
|
| 115 |
|
| 116 |
+
# inversion initial noise
|
| 117 |
with torch.no_grad():
|
| 118 |
z, info = denoise(model, **inp, timesteps=timesteps, guidance=1, inverse=True, info=info)
|
| 119 |
|