Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -26,6 +26,7 @@ login(token=os.getenv('Token'))
|
|
| 26 |
import torch
|
| 27 |
|
| 28 |
device = torch.cuda.current_device()
|
|
|
|
| 29 |
total_memory = torch.cuda.get_device_properties(device).total_memory
|
| 30 |
allocated_memory = torch.cuda.memory_allocated(device)
|
| 31 |
reserved_memory = torch.cuda.memory_reserved(device)
|
|
@@ -34,6 +35,14 @@ print(f"Total memory: {total_memory / 1024**2:.2f} MB")
|
|
| 34 |
print(f"Allocated memory: {allocated_memory / 1024**2:.2f} MB")
|
| 35 |
print(f"Reserved memory: {reserved_memory / 1024**2:.2f} MB")
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
@dataclass
|
| 39 |
class SamplingOptions:
|
|
@@ -54,37 +63,8 @@ is_schnell = False
|
|
| 54 |
feature_path = 'feature'
|
| 55 |
output_dir = 'result'
|
| 56 |
add_sampling_metadata = True
|
| 57 |
-
# class FluxEditor:
|
| 58 |
-
# def __init__(self, args):
|
| 59 |
-
# self.args = args
|
| 60 |
-
# self.device = torch.device(args.device)
|
| 61 |
-
# self.offload = args.offload
|
| 62 |
-
# self.name = args.name
|
| 63 |
-
# self.is_schnell = args.name == "flux-schnell"
|
| 64 |
-
|
| 65 |
-
# self.feature_path = 'feature'
|
| 66 |
-
# self.output_dir = 'result'
|
| 67 |
-
# self.add_sampling_metadata = True
|
| 68 |
-
|
| 69 |
-
# if self.name not in configs:
|
| 70 |
-
# available = ", ".join(configs.keys())
|
| 71 |
-
# raise ValueError(f"Got unknown model name: {name}, chose from {available}")
|
| 72 |
-
|
| 73 |
-
# # init all components
|
| 74 |
-
|
| 75 |
|
| 76 |
-
|
| 77 |
-
# self.model.cpu()
|
| 78 |
-
# torch.cuda.empty_cache()
|
| 79 |
-
# self.ae.encoder.to(self.device)
|
| 80 |
-
ae = load_ae(name, device="cpu" if offload else device)
|
| 81 |
-
t5 = load_t5(device, max_length=256 if name == "flux-schnell" else 512)
|
| 82 |
-
clip = load_clip(device)
|
| 83 |
-
model = load_flow_model(name, device="cpu" if offload else device)
|
| 84 |
-
print("!!!!!!!!!!!!device!!!!!!!!!!!!!!",device)
|
| 85 |
-
print("!!!!!!!!self.t5!!!!!!",next(t5.parameters()).device)
|
| 86 |
-
print("!!!!!!!!self.clip!!!!!!",next(clip.parameters()).device)
|
| 87 |
-
print("!!!!!!!!self.model!!!!!!",next(model.parameters()).device)
|
| 88 |
|
| 89 |
@torch.inference_mode()
|
| 90 |
def encode(init_image, torch_device, ae):
|
|
|
|
| 26 |
import torch
|
| 27 |
|
| 28 |
device = torch.cuda.current_device()
|
| 29 |
+
print("!!!!!!!!!!!!device!!!!!!!!!!!!!!",device)
|
| 30 |
total_memory = torch.cuda.get_device_properties(device).total_memory
|
| 31 |
allocated_memory = torch.cuda.memory_allocated(device)
|
| 32 |
reserved_memory = torch.cuda.memory_reserved(device)
|
|
|
|
| 35 |
print(f"Allocated memory: {allocated_memory / 1024**2:.2f} MB")
|
| 36 |
print(f"Reserved memory: {reserved_memory / 1024**2:.2f} MB")
|
| 37 |
|
| 38 |
+
ae = load_ae(name, device)
|
| 39 |
+
t5 = load_t5(device, max_length=256 if name == "flux-schnell" else 512)
|
| 40 |
+
clip = load_clip(device)
|
| 41 |
+
model = load_flow_model(name, device=device)
|
| 42 |
+
print("!!!!!!!!!!!!device!!!!!!!!!!!!!!",device)
|
| 43 |
+
print("!!!!!!!!self.t5!!!!!!",next(t5.parameters()).device)
|
| 44 |
+
print("!!!!!!!!self.clip!!!!!!",next(clip.parameters()).device)
|
| 45 |
+
print("!!!!!!!!self.model!!!!!!",next(model.parameters()).device)
|
| 46 |
|
| 47 |
@dataclass
|
| 48 |
class SamplingOptions:
|
|
|
|
| 63 |
feature_path = 'feature'
|
| 64 |
output_dir = 'result'
|
| 65 |
add_sampling_metadata = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
@torch.inference_mode()
|
| 70 |
def encode(init_image, torch_device, ae):
|