Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -25,16 +25,17 @@ login(token=os.getenv('Token'))
|
|
| 25 |
|
| 26 |
import torch
|
| 27 |
|
| 28 |
-
device = torch.cuda.current_device()
|
| 29 |
-
print("!!!!!!!!!!!!device!!!!!!!!!!!!!!",device)
|
| 30 |
-
total_memory = torch.cuda.get_device_properties(device).total_memory
|
| 31 |
-
allocated_memory = torch.cuda.memory_allocated(device)
|
| 32 |
-
reserved_memory = torch.cuda.memory_reserved(device)
|
| 33 |
|
| 34 |
-
print(f"Total memory: {total_memory / 1024**2:.2f} MB")
|
| 35 |
-
print(f"Allocated memory: {allocated_memory / 1024**2:.2f} MB")
|
| 36 |
-
print(f"Reserved memory: {reserved_memory / 1024**2:.2f} MB")
|
| 37 |
|
|
|
|
| 38 |
name = 'flux-dev'
|
| 39 |
ae = load_ae(name, device)
|
| 40 |
t5 = load_t5(device, max_length=256 if name == "flux-schnell" else 512)
|
|
@@ -129,14 +130,14 @@ def edit(init_image, source_prompt, target_prompt, num_steps, inject_step, guida
|
|
| 129 |
print("!!!!!!!!self.clip!!!!!!",next(clip.parameters()).device)
|
| 130 |
print("!!!!!!!!self.model!!!!!!",next(model.parameters()).device)
|
| 131 |
|
| 132 |
-
device = torch.cuda.current_device()
|
| 133 |
-
total_memory = torch.cuda.get_device_properties(device).total_memory
|
| 134 |
-
allocated_memory = torch.cuda.memory_allocated(device)
|
| 135 |
-
reserved_memory = torch.cuda.memory_reserved(device)
|
| 136 |
|
| 137 |
-
print(f"Total memory: {total_memory / 1024**2:.2f} MB")
|
| 138 |
-
print(f"Allocated memory: {allocated_memory / 1024**2:.2f} MB")
|
| 139 |
-
print(f"Reserved memory: {reserved_memory / 1024**2:.2f} MB")
|
| 140 |
|
| 141 |
with torch.no_grad():
|
| 142 |
inp = prepare(t5, clip, init_image, prompt=opts.source_prompt)
|
|
|
|
| 25 |
|
| 26 |
import torch
|
| 27 |
|
| 28 |
+
# device = torch.cuda.current_device()
|
| 29 |
+
# print("!!!!!!!!!!!!device!!!!!!!!!!!!!!",device)
|
| 30 |
+
# total_memory = torch.cuda.get_device_properties(device).total_memory
|
| 31 |
+
# allocated_memory = torch.cuda.memory_allocated(device)
|
| 32 |
+
# reserved_memory = torch.cuda.memory_reserved(device)
|
| 33 |
|
| 34 |
+
# print(f"Total memory: {total_memory / 1024**2:.2f} MB")
|
| 35 |
+
# print(f"Allocated memory: {allocated_memory / 1024**2:.2f} MB")
|
| 36 |
+
# print(f"Reserved memory: {reserved_memory / 1024**2:.2f} MB")
|
| 37 |
|
| 38 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 39 |
name = 'flux-dev'
|
| 40 |
ae = load_ae(name, device)
|
| 41 |
t5 = load_t5(device, max_length=256 if name == "flux-schnell" else 512)
|
|
|
|
| 130 |
print("!!!!!!!!self.clip!!!!!!",next(clip.parameters()).device)
|
| 131 |
print("!!!!!!!!self.model!!!!!!",next(model.parameters()).device)
|
| 132 |
|
| 133 |
+
# device = torch.cuda.current_device()
|
| 134 |
+
# total_memory = torch.cuda.get_device_properties(device).total_memory
|
| 135 |
+
# allocated_memory = torch.cuda.memory_allocated(device)
|
| 136 |
+
# reserved_memory = torch.cuda.memory_reserved(device)
|
| 137 |
|
| 138 |
+
# print(f"Total memory: {total_memory / 1024**2:.2f} MB")
|
| 139 |
+
# print(f"Allocated memory: {allocated_memory / 1024**2:.2f} MB")
|
| 140 |
+
# print(f"Reserved memory: {reserved_memory / 1024**2:.2f} MB")
|
| 141 |
|
| 142 |
with torch.no_grad():
|
| 143 |
inp = prepare(t5, clip, init_image, prompt=opts.source_prompt)
|