Spaces:
Running
on
Zero
Running
on
Zero
| import spaces | |
| from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer | |
| from threading import Thread | |
| import gradio as gr | |
| import torch | |
| import os | |
| device = "cuda" | |
| model_name = "mistralai/mathstral-7B-v0.1" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForCausalLM.from_pretrained(model_name, | |
| torch_dtype=torch.float16).to(device) | |
| HF_TOKEN = os.environ['HF_TOKEN'] | |
| def format_prompt(message, history): | |
| prompt = "" | |
| for user_prompt, bot_response in history: | |
| prompt += f"[INST] {user_prompt} [/INST]" | |
| prompt += f" {bot_response} " | |
| prompt += f"[INST] {message} [/INST]" | |
| return prompt | |
| def generate(prompt, history, | |
| max_new_tokens=1024, | |
| repetition_penalty=1.2): | |
| formatted_prompt = format_prompt(prompt, history) | |
| inputs = tokenizer(formatted_prompt, return_tensors="pt").to(device) | |
| streamer = TextIteratorStreamer(tokenizer) | |
| generate_kwargs = dict( | |
| inputs, | |
| streamer=streamer, | |
| max_new_tokens=max_new_tokens, | |
| repetition_penalty=repetition_penalty, | |
| ) | |
| thread = Thread(target=model.generate, kwargs=generate_kwargs) | |
| thread.start() | |
| text = '' | |
| n = len('<s>') + len(formatted_prompt) | |
| for word in streamer: | |
| text += word | |
| yield text[n:] | |
| return text[n:] | |
| additional_inputs=[ | |
| gr.Slider( | |
| label="Max new tokens", | |
| value=1024, | |
| minimum=0, | |
| maximum=4096, | |
| step=256, | |
| interactive=True, | |
| info="The maximum numbers of new tokens", | |
| ), | |
| gr.Slider( | |
| label="Repetition penalty", | |
| value=1.2, | |
| minimum=1.0, | |
| maximum=2.0, | |
| step=0.05, | |
| interactive=True, | |
| info="Penalize repeated tokens", | |
| ), | |
| ] | |
| css = """ | |
| #mkd { | |
| height: 500px; | |
| overflow: auto; | |
| border: 1px solid #ccc; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| gr.HTML("<h1><center>Mathstral Test</center><h1>") | |
| gr.HTML("<h3><center>Dans cette démo, vous pouvez poser des questions mathématiques et scientifiques à Mathstral. 🧮</center><h3>") | |
| gr.ChatInterface( | |
| generate, | |
| additional_inputs=additional_inputs, | |
| theme = gr.themes.Soft(), | |
| cache_examples=False, | |
| examples=[ [l.strip()] for l in open("exercices.md").readlines()], | |
| chatbot = gr.Chatbot( | |
| latex_delimiters=[ | |
| {"left" : "$$", "right": "$$", "display": True }, | |
| {"left" : "\\[", "right": "\\]", "display": True }, | |
| {"left" : "\\(", "right": "\\)", "display": False }, | |
| {"left": "$", "right": "$", "display": False } | |
| ] | |
| ) | |
| ) | |
| demo.queue(max_size=100).launch(debug=True) |