Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from huggingface_hub import HfApi, hf_hub_download | |
| from huggingface_hub.repocard import metadata_load | |
| import requests | |
| import re | |
| import pandas as pd | |
| from huggingface_hub import ModelCard | |
| def pass_emoji(passed): | |
| if passed is True: | |
| passed = "โ " | |
| else: | |
| passed = "โ" | |
| return passed | |
| api = HfApi() | |
| def get_user_audio_classification_models(hf_username): | |
| """ | |
| List the user's Audio Classification models | |
| :param hf_username: User HF username | |
| """ | |
| models = api.list_models(author=hf_username, filter=["audio-classification"]) | |
| user_model_ids = [x.modelId for x in models] | |
| models_gtzan = [] | |
| for model in user_model_ids: | |
| meta = get_metadata(model) | |
| if meta is None: | |
| continue | |
| if meta["datasets"] == ['marsyas/gtzan']: | |
| models_gtzan.append(model) | |
| return models_gtzan | |
| def get_metadata(model_id): | |
| """ | |
| Get model metadata (contains evaluation data) | |
| :param model_id | |
| """ | |
| try: | |
| readme_path = hf_hub_download(model_id, filename="README.md") | |
| return metadata_load(readme_path) | |
| except requests.exceptions.HTTPError: | |
| # 404 README.md not found | |
| return None | |
| def extract_accuracy(model_card_content): | |
| """ | |
| Extract the accuracy value from the models' model card | |
| :param model_card_content: model card content | |
| """ | |
| accuracy_pattern = r"Accuracy: (\d+\.\d+)" | |
| match = re.search(accuracy_pattern, model_card_content) | |
| if match: | |
| accuracy = match.group(1) | |
| return float(accuracy) | |
| else: | |
| return None | |
| def parse_metrics_accuracy(model_id): | |
| """ | |
| Get model card and parse it | |
| :param model_id: model id | |
| """ | |
| card = ModelCard.load(model_id) | |
| return extract_accuracy(card.content) | |
| def calculate_best_acc_result(user_model_ids): | |
| """ | |
| Calculate the best results of a unit | |
| :param user_model_ids: RL models of a user | |
| """ | |
| best_result = -100 | |
| best_model = "" | |
| for model in user_model_ids: | |
| meta = get_metadata(model) | |
| if meta is None: | |
| continue | |
| accuracy = parse_metrics_accuracy(model) | |
| if accuracy > best_result: | |
| best_result = accuracy | |
| best_model = meta['model-index'][0]["name"] | |
| return best_result, best_model | |
| def certification(hf_username): | |
| results_certification = [ | |
| { | |
| "unit": "Unit 4: Audio Classification", | |
| "task": "audio-classification", | |
| "baseline_metric": 0.87, | |
| "best_result": 0, | |
| "best_model_id": "", | |
| "passed_": False | |
| }, | |
| { | |
| "unit": "Unit 5: TBD", | |
| "task": "TBD", | |
| "baseline_metric": 0.99, | |
| "best_result": 0, | |
| "best_model_id": "", | |
| "passed_": False | |
| }, | |
| { | |
| "unit": "Unit 6: TBD", | |
| "task": "TBD", | |
| "baseline_metric": 0.99, | |
| "best_result": 0, | |
| "best_model_id": "", | |
| "passed_": False | |
| }, | |
| { | |
| "unit": "Unit 7: TBD", | |
| "task": "TBD", | |
| "baseline_metric": 0.99, | |
| "best_result": 0, | |
| "best_model_id": "", | |
| "passed_": False | |
| }, | |
| ] | |
| for unit in results_certification: | |
| if unit["task"] == "audio-classification": | |
| user_models = get_user_audio_classification_models(hf_username) | |
| best_result, best_model_id = calculate_best_acc_result(user_models) | |
| unit["best_result"] = best_result | |
| unit["best_model_id"] = best_model_id | |
| if unit["best_result"] >= unit["baseline_metric"]: | |
| unit["passed_"] = True | |
| unit["passed"] = pass_emoji(unit["passed_"]) | |
| else: | |
| # TBD for other units | |
| unit["passed"] = pass_emoji(unit["passed_"]) | |
| continue | |
| print(results_certification) | |
| df = pd.DataFrame(results_certification) | |
| df = df[['passed', 'unit', 'task', 'baseline_metric', 'best_result', 'best_model_id']] | |
| return df | |
| with gr.Blocks() as demo: | |
| gr.Markdown(f""" | |
| # ๐ Check your progress in the Audio Course ๐ | |
| - To get a certificate of completion, you must **pass 3 out of 4 assignments before July 31st 2023**. | |
| - To get an honors certificate, you must **pass 4 out of 4 assignments before July 31st 2023**. | |
| To pass an assignment, your model's metric should be equal to or higher than the baseline metric. | |
| Make sure that you have uploaded your model(s) to Hub and type your Hugging Face Username here to check if you pass (in my case MariaK) | |
| """) | |
| hf_username = gr.Textbox(placeholder="MariaK", label="Your Hugging Face Username") | |
| check_progress_button = gr.Button(value="Check my progress") | |
| output = gr.components.Dataframe(value=certification(hf_username)) | |
| check_progress_button.click(fn=certification, inputs=hf_username, outputs=output) | |
| demo.launch() |