Spaces:
Sleeping
Sleeping
Commit
·
b7e13eb
1
Parent(s):
b4484e7
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from langchain.agents import AgentType, Tool, initialize_agent
|
| 2 |
+
from langchain.callbacks import StreamlitCallbackHandler
|
| 3 |
+
from langchain.chains import RetrievalQA
|
| 4 |
+
from langchain.chains.conversation.memory import ConversationBufferMemory
|
| 5 |
+
from utils.ask_human import CustomAskHumanTool
|
| 6 |
+
from utils.model_params import get_model_params
|
| 7 |
+
from utils.prompts import create_agent_prompt, create_qa_prompt
|
| 8 |
+
from PyPDF2 import PdfReader
|
| 9 |
+
from langchain.vectorstores import FAISS
|
| 10 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 11 |
+
from langchain.embeddings import HuggingFaceHubEmbeddings
|
| 12 |
+
from langchain import HuggingFaceHub
|
| 13 |
+
import torch
|
| 14 |
+
import streamlit as st
|
| 15 |
+
from langchain.utilities import SerpAPIWrapper
|
| 16 |
+
import os
|
| 17 |
+
hf_token = os.environ['HF_TOKEN']
|
| 18 |
+
serp_token = os.environ['SERP_TOKEN']
|
| 19 |
+
repo_id = "sentence-transformers/all-mpnet-base-v2"
|
| 20 |
+
|
| 21 |
+
HUGGINGFACEHUB_API_TOKEN= hf_token
|
| 22 |
+
hf = HuggingFaceHubEmbeddings(
|
| 23 |
+
repo_id=repo_id,
|
| 24 |
+
task="feature-extraction",
|
| 25 |
+
huggingfacehub_api_token= HUGGINGFACEHUB_API_TOKEN,
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
EMB_SBERT_MPNET_BASE = "sentence-transformers/all-mpnet-base-v2"
|
| 29 |
+
config = {"persist_directory":None,
|
| 30 |
+
"load_in_8bit":False,
|
| 31 |
+
"embedding" : EMB_SBERT_MPNET_BASE
|
| 32 |
+
}
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def create_sbert_mpnet():
|
| 36 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 37 |
+
return HuggingFaceEmbeddings(model_name=EMB_SBERT_MPNET_BASE, model_kwargs={"device": device})
|
| 38 |
+
|
| 39 |
+
llm = HuggingFaceHub(
|
| 40 |
+
repo_id='mistralai/Mistral-7B-Instruct-v0.2',
|
| 41 |
+
huggingfacehub_api_token = HUGGINGFACEHUB_API_TOKEN,
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
if config["embedding"] == EMB_SBERT_MPNET_BASE:
|
| 47 |
+
embedding = create_sbert_mpnet()
|
| 48 |
+
|
| 49 |
+
from langchain.text_splitter import CharacterTextSplitter, TokenTextSplitter
|
| 50 |
+
from langchain.vectorstores import Chroma
|
| 51 |
+
from langchain.chains import RetrievalQA
|
| 52 |
+
from langchain import PromptTemplate
|
| 53 |
+
|
| 54 |
+
### PAGE ELEMENTS
|
| 55 |
+
|
| 56 |
+
# st.set_page_config(
|
| 57 |
+
# page_title="RAG Agent Demo",
|
| 58 |
+
# page_icon="🦜",
|
| 59 |
+
# layout="centered",
|
| 60 |
+
# initial_sidebar_state="collapsed",
|
| 61 |
+
# )
|
| 62 |
+
# st.markdown("### Leveraging the User to Improve Agents in RAG Use Cases")
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def main():
|
| 66 |
+
|
| 67 |
+
st.set_page_config(page_title="Ask your PDF powered by Search Agents")
|
| 68 |
+
st.header("Ask your PDF with RAG Agent 💬")
|
| 69 |
+
|
| 70 |
+
# upload file
|
| 71 |
+
pdf = st.file_uploader("Upload your PDF and chat with Agent", type="pdf")
|
| 72 |
+
|
| 73 |
+
# extract the text
|
| 74 |
+
if pdf is not None:
|
| 75 |
+
pdf_reader = PdfReader(pdf)
|
| 76 |
+
text = ""
|
| 77 |
+
for page in pdf_reader.pages:
|
| 78 |
+
text += page.extract_text()
|
| 79 |
+
|
| 80 |
+
# Split documents and create text snippets
|
| 81 |
+
|
| 82 |
+
text_splitter = CharacterTextSplitter(chunk_size=100, chunk_overlap=0)
|
| 83 |
+
texts = text_splitter.split_text(text)
|
| 84 |
+
|
| 85 |
+
embeddings = hf
|
| 86 |
+
knowledge_base = FAISS.from_texts(texts, embeddings)
|
| 87 |
+
|
| 88 |
+
retriever = knowledge_base.as_retriever(search_kwargs={"k":5})
|
| 89 |
+
# retriever = FAISS.as_retriever()
|
| 90 |
+
# persist_directory = config["persist_directory"]
|
| 91 |
+
# vectordb = Chroma.from_documents(documents=texts, embedding=embedding, persist_directory=persist_directory)
|
| 92 |
+
|
| 93 |
+
# retriever = vectordb.as_retriever(search_kwargs={"k":5})
|
| 94 |
+
|
| 95 |
+
# mode = st.selectbox(
|
| 96 |
+
# label="Select agent type",
|
| 97 |
+
# options=("Agent with AskHuman tool", "Traditional RAG Agent","Search Agent"),
|
| 98 |
+
# )
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
qa_chain = RetrievalQA.from_chain_type(
|
| 104 |
+
llm=llm,
|
| 105 |
+
chain_type="stuff",
|
| 106 |
+
retriever=retriever,
|
| 107 |
+
return_source_documents=True,
|
| 108 |
+
chain_type_kwargs={
|
| 109 |
+
"prompt": create_qa_prompt(),
|
| 110 |
+
},
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
conversational_memory = ConversationBufferMemory(
|
| 114 |
+
memory_key="chat_history", k=3, return_messages=True
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
# tool for db search
|
| 118 |
+
db_search_tool = Tool(
|
| 119 |
+
name="dbRetrievalTool",
|
| 120 |
+
func=qa_chain,
|
| 121 |
+
description="""Use this tool first to answer human questions. The input to this tool should be the question.""",
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
search = SerpAPIWrapper(serpapi_api_key=serp_token)
|
| 125 |
+
|
| 126 |
+
google_searchtool= Tool(
|
| 127 |
+
name="Current Search",
|
| 128 |
+
func=search.run,
|
| 129 |
+
description="use this tool to answer questions if the answer from other tools are not sufficient.",
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
# tool for asking human
|
| 133 |
+
human_ask_tool = CustomAskHumanTool()
|
| 134 |
+
# agent prompt
|
| 135 |
+
prefix, format_instructions, suffix = create_agent_prompt()
|
| 136 |
+
|
| 137 |
+
# initialize agent
|
| 138 |
+
agent = initialize_agent(
|
| 139 |
+
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
|
| 140 |
+
tools=[db_search_tool,google_searchtool],
|
| 141 |
+
llm=llm,
|
| 142 |
+
verbose=True,
|
| 143 |
+
max_iterations=5,
|
| 144 |
+
early_stopping_method="generate",
|
| 145 |
+
memory=conversational_memory,
|
| 146 |
+
agent_kwargs={
|
| 147 |
+
"prefix": prefix,
|
| 148 |
+
"format_instructions": format_instructions,
|
| 149 |
+
"suffix": suffix,
|
| 150 |
+
},
|
| 151 |
+
handle_parsing_errors=True,
|
| 152 |
+
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
# question form
|
| 156 |
+
with st.form(key="form"):
|
| 157 |
+
user_input = st.text_input("Ask your question")
|
| 158 |
+
submit_clicked = st.form_submit_button("Submit Question")
|
| 159 |
+
|
| 160 |
+
# output container
|
| 161 |
+
output_container = st.empty()
|
| 162 |
+
if submit_clicked:
|
| 163 |
+
output_container = output_container.container()
|
| 164 |
+
output_container.chat_message("user").write(user_input)
|
| 165 |
+
|
| 166 |
+
answer_container = output_container.chat_message("assistant", avatar="🦜")
|
| 167 |
+
st_callback = StreamlitCallbackHandler(answer_container)
|
| 168 |
+
|
| 169 |
+
answer = agent.run(user_input, callbacks=[st_callback])
|
| 170 |
+
|
| 171 |
+
answer_container = output_container.container()
|
| 172 |
+
answer_container.chat_message("assistant").write(answer)
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
if __name__ == '__main__':
|
| 177 |
+
main()
|