Spaces:
Build error
Build error
Matteo Mendula
commited on
Commit
Β·
28e566d
1
Parent(s):
c20f8d9
code refactoring
Browse files
app.py
CHANGED
|
@@ -1,49 +1,43 @@
|
|
| 1 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 2 |
|
| 3 |
-
# import torch
|
| 4 |
-
# device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
| 5 |
-
# device
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
download = False
|
| 10 |
save_model_locally= False
|
| 11 |
if download:
|
| 12 |
tokenizer = AutoTokenizer.from_pretrained("MilaNLProc/feel-it-italian-sentiment", cache_dir="data/")
|
| 13 |
-
|
| 14 |
-
|
| 15 |
tokenizer_emo = AutoTokenizer.from_pretrained("MilaNLProc/feel-it-italian-emotion", cache_dir="data/")
|
| 16 |
model_emo = AutoModelForSequenceClassification.from_pretrained("MilaNLProc/feel-it-italian-emotion", cache_dir="data/")
|
| 17 |
model_emo.eval()
|
| 18 |
if save_model_locally:
|
| 19 |
-
|
| 20 |
tokenizer.save_pretrained('./local_models/sentiment_ITA')
|
| 21 |
model_emo.save_pretrained('./local_models/emotion_ITA')
|
| 22 |
tokenizer_emo.save_pretrained('./local_models/emotion_ITA')
|
| 23 |
else:
|
| 24 |
tokenizer = AutoTokenizer.from_pretrained("./local_models/sentiment_ITA/")
|
| 25 |
-
|
| 26 |
-
|
| 27 |
|
| 28 |
tokenizer_emo = AutoTokenizer.from_pretrained("./local_models/emotion_ITA/")
|
| 29 |
model_emo = AutoModelForSequenceClassification.from_pretrained("./local_models/emotion_ITA/", num_labels=4)
|
| 30 |
model_emo.eval()
|
| 31 |
|
| 32 |
|
| 33 |
-
#%%
|
| 34 |
|
| 35 |
from transformers import pipeline
|
| 36 |
import re
|
| 37 |
|
| 38 |
-
|
| 39 |
-
generator_emo = pipeline(task="text-classification",
|
| 40 |
|
| 41 |
def sentiment_emoji(input_abs):
|
| 42 |
|
| 43 |
if(input_abs ==""):
|
| 44 |
return "π€·ββοΈ"
|
| 45 |
|
| 46 |
-
res =
|
| 47 |
res = {res[x]["label"]: res[x]["score"] for x in range(len(res))}
|
| 48 |
res["π positive"] = res.pop("positive")
|
| 49 |
res["π negative"] = res.pop("negative")
|
|
|
|
| 1 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
download = False
|
| 4 |
save_model_locally= False
|
| 5 |
if download:
|
| 6 |
tokenizer = AutoTokenizer.from_pretrained("MilaNLProc/feel-it-italian-sentiment", cache_dir="data/")
|
| 7 |
+
model_sent = AutoModelForSequenceClassification.from_pretrained("MilaNLProc/feel-it-italian-sentiment", cache_dir="data/")
|
| 8 |
+
model_sent.eval()
|
| 9 |
tokenizer_emo = AutoTokenizer.from_pretrained("MilaNLProc/feel-it-italian-emotion", cache_dir="data/")
|
| 10 |
model_emo = AutoModelForSequenceClassification.from_pretrained("MilaNLProc/feel-it-italian-emotion", cache_dir="data/")
|
| 11 |
model_emo.eval()
|
| 12 |
if save_model_locally:
|
| 13 |
+
model_sent.save_pretrained('./local_models/sentiment_ITA')
|
| 14 |
tokenizer.save_pretrained('./local_models/sentiment_ITA')
|
| 15 |
model_emo.save_pretrained('./local_models/emotion_ITA')
|
| 16 |
tokenizer_emo.save_pretrained('./local_models/emotion_ITA')
|
| 17 |
else:
|
| 18 |
tokenizer = AutoTokenizer.from_pretrained("./local_models/sentiment_ITA/")
|
| 19 |
+
model_sent = AutoModelForSequenceClassification.from_pretrained("./local_models/sentiment_ITA/", num_labels=2)
|
| 20 |
+
model_sent.eval()
|
| 21 |
|
| 22 |
tokenizer_emo = AutoTokenizer.from_pretrained("./local_models/emotion_ITA/")
|
| 23 |
model_emo = AutoModelForSequenceClassification.from_pretrained("./local_models/emotion_ITA/", num_labels=4)
|
| 24 |
model_emo.eval()
|
| 25 |
|
| 26 |
|
| 27 |
+
#%%generator_sent
|
| 28 |
|
| 29 |
from transformers import pipeline
|
| 30 |
import re
|
| 31 |
|
| 32 |
+
generator_sent = pipeline(task="text-classification", model_sent=model_sent, tokenizer=tokenizer, return_all_scores =True)
|
| 33 |
+
generator_emo = pipeline(task="text-classification", model_sent=model_emo, tokenizer=tokenizer_emo, return_all_scores =True)
|
| 34 |
|
| 35 |
def sentiment_emoji(input_abs):
|
| 36 |
|
| 37 |
if(input_abs ==""):
|
| 38 |
return "π€·ββοΈ"
|
| 39 |
|
| 40 |
+
res = generator_sent(input_abs)[0]
|
| 41 |
res = {res[x]["label"]: res[x]["score"] for x in range(len(res))}
|
| 42 |
res["π positive"] = res.pop("positive")
|
| 43 |
res["π negative"] = res.pop("negative")
|