Maximofn commited on
Commit
e25d2ac
·
1 Parent(s): 1fdb3b9

Refactoriza la función `respond` en `app.py` para establecer valores predeterminados para `system_message`, `max_tokens`, `temperature` y `top_p`. Elimina los inputs adicionales en la interfaz de chat y habilita el modo de depuración en el lanzamiento de la aplicación.

Browse files
Files changed (1) hide show
  1. app.py +9 -17
app.py CHANGED
@@ -5,15 +5,17 @@ from huggingface_hub import InferenceClient
5
  def respond(
6
  message,
7
  history: list[dict[str, str]],
8
- system_message,
9
- max_tokens,
10
- temperature,
11
- top_p,
12
  hf_token: gr.OAuthToken,
13
  ):
14
  """
15
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
16
  """
 
 
 
 
 
 
17
  client = InferenceClient(token=hf_token.token, model="openbmb/MiniCPM-V-4_5")
18
 
19
  messages = [{"role": "system", "content": system_message}]
@@ -46,18 +48,6 @@ For information on how to customize the ChatInterface, peruse the gradio docs: h
46
  chatbot = gr.ChatInterface(
47
  respond,
48
  type="messages",
49
- additional_inputs=[
50
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
51
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
52
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
53
- gr.Slider(
54
- minimum=0.1,
55
- maximum=1.0,
56
- value=0.95,
57
- step=0.05,
58
- label="Top-p (nucleus sampling)",
59
- ),
60
- ],
61
  )
62
 
63
  with gr.Blocks() as demo:
@@ -67,4 +57,6 @@ with gr.Blocks() as demo:
67
 
68
 
69
  if __name__ == "__main__":
70
- demo.launch()
 
 
 
5
  def respond(
6
  message,
7
  history: list[dict[str, str]],
 
 
 
 
8
  hf_token: gr.OAuthToken,
9
  ):
10
  """
11
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
12
  """
13
+ # Configuración por defecto
14
+ system_message = "You are a friendly Chatbot."
15
+ max_tokens = 512
16
+ temperature = 0.7
17
+ top_p = 0.95
18
+
19
  client = InferenceClient(token=hf_token.token, model="openbmb/MiniCPM-V-4_5")
20
 
21
  messages = [{"role": "system", "content": system_message}]
 
48
  chatbot = gr.ChatInterface(
49
  respond,
50
  type="messages",
 
 
 
 
 
 
 
 
 
 
 
 
51
  )
52
 
53
  with gr.Blocks() as demo:
 
57
 
58
 
59
  if __name__ == "__main__":
60
+ demo.launch(
61
+ debug=True, # Habilita recarga automática y debugging
62
+ )