Spaces:
Runtime error
Runtime error
| """ | |
| app.py - the main module for the gradio app | |
| Usage: | |
| python app.py | |
| Environment Variables: | |
| USE_TORCH (str): whether to use torch (1) or not (0) | |
| TOKENIZERS_PARALLELISM (str): whether to use parallelism (true) or not (false) | |
| Optional Environment Variables: | |
| APP_MAX_WORDS (int): the maximum number of words to use for summarization | |
| APP_OCR_MAX_PAGES (int): the maximum number of pages to use for OCR | |
| """ | |
| import contextlib | |
| import gc | |
| import logging | |
| import os | |
| import random | |
| import re | |
| import time | |
| from pathlib import Path | |
| os.environ["USE_TORCH"] = "1" | |
| os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
| logging.basicConfig( | |
| level=logging.INFO, | |
| format="%(asctime)s [%(levelname)s] %(name)s - %(message)s", | |
| ) | |
| import gradio as gr | |
| import nltk | |
| import torch | |
| from cleantext import clean | |
| from doctr.models import ocr_predictor | |
| from pdf2text import convert_PDF_to_Text | |
| from summarize import load_model_and_tokenizer, summarize_via_tokenbatches | |
| from utils import ( | |
| load_example_filenames, | |
| saves_summary, | |
| textlist2html, | |
| truncate_word_count, | |
| ) | |
| _here = Path(__file__).parent | |
| nltk.download("punkt", force=True, quiet=True) | |
| nltk.download("popular", force=True, quiet=True) | |
| MODEL_OPTIONS = [ | |
| "pszemraj/long-t5-tglobal-base-16384-book-summary", | |
| "pszemraj/long-t5-tglobal-base-sci-simplify", | |
| "pszemraj/long-t5-tglobal-base-sci-simplify-elife", | |
| "pszemraj/long-t5-tglobal-base-16384-booksci-summary-v1", | |
| "pszemraj/pegasus-x-large-book-summary", | |
| ] # models users can choose from | |
| # if duplicating space,, uncomment this line to adjust the max words | |
| # os.environ["APP_MAX_WORDS"] = str(2048) # set the max words to 2048 | |
| # os.environ["APP_OCR_MAX_PAGES"] = str(40) # set the max pages to 40 | |
| def predict( | |
| input_text: str, | |
| model_name: str, | |
| token_batch_length: int = 1024, | |
| empty_cache: bool = True, | |
| **settings, | |
| ) -> list: | |
| """ | |
| predict - helper fn to support multiple models for summarization at once | |
| :param str input_text: the input text to summarize | |
| :param str model_name: model name to use | |
| :param int token_batch_length: the length of the token batches to use | |
| :param bool empty_cache: whether to empty the cache before loading a new= model | |
| :return: list of dicts with keys "summary" and "score" | |
| """ | |
| if torch.cuda.is_available() and empty_cache: | |
| torch.cuda.empty_cache() | |
| model, tokenizer = load_model_and_tokenizer(model_name) | |
| summaries = summarize_via_tokenbatches( | |
| input_text, | |
| model, | |
| tokenizer, | |
| batch_length=token_batch_length, | |
| **settings, | |
| ) | |
| del model | |
| del tokenizer | |
| gc.collect() | |
| return summaries | |
| def proc_submission( | |
| input_text: str, | |
| model_name: str, | |
| num_beams: int, | |
| token_batch_length: int, | |
| length_penalty: float, | |
| repetition_penalty: float, | |
| no_repeat_ngram_size: int, | |
| max_input_length: int = 4096, | |
| ): | |
| """ | |
| proc_submission - a helper function for the gradio module to process submissions | |
| Args: | |
| input_text (str): the input text to summarize | |
| model_name (str): the hf model tag of the model to use | |
| num_beams (int): the number of beams to use | |
| token_batch_length (int): the length of the token batches to use | |
| length_penalty (float): the length penalty to use | |
| repetition_penalty (float): the repetition penalty to use | |
| no_repeat_ngram_size (int): the no repeat ngram size to use | |
| max_input_length (int, optional): the maximum input length to use. Defaults to 4096. | |
| Note: | |
| the max_input_length is set to 4096 by default, but can be changed by setting the | |
| environment variable APP_MAX_WORDS to a different value. | |
| Returns: | |
| str in HTML format, string of the summary, str of score | |
| """ | |
| settings = { | |
| "length_penalty": float(length_penalty), | |
| "repetition_penalty": float(repetition_penalty), | |
| "no_repeat_ngram_size": int(no_repeat_ngram_size), | |
| "encoder_no_repeat_ngram_size": 4, | |
| "num_beams": int(num_beams), | |
| "min_length": 4, | |
| "max_length": int(token_batch_length // 4), | |
| "early_stopping": True, | |
| "do_sample": False, | |
| } | |
| max_input_length = int(os.environ.get("APP_MAX_WORDS", max_input_length)) | |
| logging.info(f"max_input_length set to: {max_input_length}") | |
| st = time.perf_counter() | |
| history = {} | |
| clean_text = clean(input_text, lower=False) | |
| processed = truncate_word_count(clean_text, max_words=max_input_length) | |
| if processed["was_truncated"]: | |
| tr_in = processed["truncated_text"] | |
| # create elaborate HTML warning | |
| input_wc = re.split(r"\s+", input_text) | |
| msg = f""" | |
| <div style="background-color: #FFA500; color: white; padding: 20px;"> | |
| <h3>Warning</h3> | |
| <p>Input text was truncated to {max_input_length} words. That's about {100*max_input_length/len(input_wc):.2f}% of the submission.</p> | |
| </div> | |
| """ | |
| logging.warning(msg) | |
| history["WARNING"] = msg | |
| else: | |
| tr_in = input_text | |
| msg = None | |
| if len(input_text) < 50: | |
| # this is essentially a different case from the above | |
| msg = f""" | |
| <div style="background-color: #880808; color: white; padding: 20px;"> | |
| <h3>Warning</h3> | |
| <p>Input text is too short to summarize. Detected {len(input_text)} characters. | |
| Please load text by selecting an example from the dropdown menu or by pasting text into the text box.</p> | |
| </div> | |
| """ | |
| logging.warning(msg) | |
| logging.warning("RETURNING EMPTY STRING") | |
| history["WARNING"] = msg | |
| return msg, "", [] | |
| _summaries = predict( | |
| input_text=tr_in, | |
| model_name=model_name, | |
| token_batch_length=token_batch_length, | |
| **settings, | |
| ) | |
| sum_text = [s["summary"][0].strip() + "\n" for i, s in _summaries] | |
| sum_scores = [ | |
| f" - Batch Summary {i}: {round(s['summary_score'],4)}" | |
| for i, s in enumerate(_summaries) | |
| ] | |
| full_summary = textlist2html(sum_text) | |
| history["Summary Scores"] = "<br><br>" | |
| scores_out = "\n".join(sum_scores) | |
| rt = round((time.perf_counter() - st) / 60, 2) | |
| logging.info(f"Runtime: {rt} minutes") | |
| html = "" | |
| html += f"<p>Runtime: {rt} minutes with model: {model_name}</p>" | |
| if msg is not None: | |
| html += msg | |
| html += "" | |
| # save to file | |
| settings["model_name"] = model_name | |
| saved_file = saves_summary(summarize_output=_summaries, outpath=None, **settings) | |
| return html, full_summary, scores_out, saved_file | |
| def load_single_example_text( | |
| example_path: str or Path, | |
| max_pages: int = 20, | |
| ) -> str: | |
| """ | |
| load_single_example_text - loads a single example text file | |
| :param strorPath example_path: name of the example to load | |
| :param int max_pages: the maximum number of pages to load from a PDF | |
| :return str: the text of the example | |
| """ | |
| global name_to_path | |
| full_ex_path = name_to_path[example_path] | |
| full_ex_path = Path(full_ex_path) | |
| if full_ex_path.suffix in [".txt", ".md"]: | |
| with open(full_ex_path, "r", encoding="utf-8", errors="ignore") as f: | |
| raw_text = f.read() | |
| text = clean(raw_text, lower=False) | |
| elif full_ex_path.suffix == ".pdf": | |
| logging.info(f"Loading PDF file {full_ex_path}") | |
| max_pages = int(os.environ.get("APP_MAX_PAGES", max_pages)) | |
| logging.info(f"max_pages set to: {max_pages}") | |
| conversion_stats = convert_PDF_to_Text( | |
| full_ex_path, | |
| ocr_model=ocr_model, | |
| max_pages=max_pages, | |
| ) | |
| text = conversion_stats["converted_text"] | |
| else: | |
| logging.error(f"Unknown file type {full_ex_path.suffix}") | |
| text = "ERROR - check example path" | |
| return text | |
| def load_uploaded_file(file_obj, max_pages: int = 20, lower: bool = False) -> str: | |
| """ | |
| load_uploaded_file - loads a file uploaded by the user | |
| :param file_obj (POTENTIALLY list): Gradio file object inside a list | |
| :param int max_pages: the maximum number of pages to load from a PDF | |
| :param bool lower: whether to lowercase the text | |
| :return str: the text of the file | |
| """ | |
| logger = logging.getLogger(__name__) | |
| # check if mysterious file object is a list | |
| if isinstance(file_obj, list): | |
| file_obj = file_obj[0] | |
| file_path = Path(file_obj.name) | |
| try: | |
| logger.info(f"Loading file:\t{file_path}") | |
| if file_path.suffix in [".txt", ".md"]: | |
| with open(file_path, "r", encoding="utf-8", errors="ignore") as f: | |
| raw_text = f.read() | |
| text = clean(raw_text, lower=lower) | |
| elif file_path.suffix == ".pdf": | |
| logger.info(f"loading as PDF file {file_path}") | |
| max_pages = int(os.environ.get("APP_MAX_PAGES", max_pages)) | |
| logger.info(f"max_pages set to: {max_pages}") | |
| conversion_stats = convert_PDF_to_Text( | |
| file_path, | |
| ocr_model=ocr_model, | |
| max_pages=max_pages, | |
| ) | |
| text = conversion_stats["converted_text"] | |
| else: | |
| logger.error(f"Unknown file type:\t{file_path.suffix}") | |
| text = "ERROR - check file - unknown file type. PDF, TXT, and MD are supported." | |
| return text | |
| except Exception as e: | |
| logger.error(f"Trying to load file:\t{file_path},\nerror:\t{e}") | |
| return "Error: Could not read file. Ensure that it is a valid text file with encoding UTF-8 if text, and a PDF if PDF." | |
| if __name__ == "__main__": | |
| logger = logging.getLogger(__name__) | |
| logger.info("Starting app instance") | |
| logger.info("Loading OCR model") | |
| with contextlib.redirect_stdout(None): | |
| ocr_model = ocr_predictor( | |
| "db_resnet50", | |
| "crnn_mobilenet_v3_large", | |
| pretrained=True, | |
| assume_straight_pages=True, | |
| ) | |
| name_to_path = load_example_filenames(_here / "examples") | |
| logger.info(f"Loaded {len(name_to_path)} examples") | |
| demo = gr.Blocks(title="Document Summarization with Long-Document Transformers") | |
| _examples = list(name_to_path.keys()) | |
| with demo: | |
| gr.Markdown("# Document Summarization with Long-Document Transformers") | |
| gr.Markdown( | |
| "This is an example use case for fine-tuned long document transformers. The model is trained on book summaries (via the BookSum dataset). The models in this demo are [LongT5-base](https://huggingface.co/pszemraj/long-t5-tglobal-base-16384-book-summary) and [Pegasus-X-Large](https://huggingface.co/pszemraj/pegasus-x-large-book-summary)." | |
| ) | |
| with gr.Column(): | |
| gr.Markdown("## Load Inputs & Select Parameters") | |
| gr.Markdown( | |
| "Enter text below in the text area. The text will be summarized [using the selected parameters](https://huggingface.co/blog/how-to-generate). Optionally load an example below or upload a file. (`.txt` or `.pdf` - _[link to guide](https://i.imgur.com/c6Cs9ly.png)_)" | |
| ) | |
| with gr.Row(variant="compact"): | |
| with gr.Column(scale=0.5, variant="compact"): | |
| model_name = gr.Dropdown( | |
| choices=MODEL_OPTIONS, | |
| value=MODEL_OPTIONS[0], | |
| label="Model Name", | |
| ) | |
| num_beams = gr.Radio( | |
| choices=[2, 3, 4], | |
| label="Beam Search: # of Beams", | |
| value=2, | |
| ) | |
| load_examples_button = gr.Button( | |
| "Load Example in Dropdown", | |
| ) | |
| load_file_button = gr.Button("Load an Uploaded File") | |
| with gr.Column(variant="compact"): | |
| example_name = gr.Dropdown( | |
| _examples, | |
| label="Examples", | |
| value=random.choice(_examples), | |
| ) | |
| uploaded_file = gr.File( | |
| label="File Upload", | |
| file_count="single", | |
| file_types=[".txt", ".md", ".pdf"], | |
| type="file", | |
| ) | |
| with gr.Row(): | |
| input_text = gr.Textbox( | |
| lines=4, | |
| max_lines=12, | |
| label="Input Text (for summarization)", | |
| placeholder="Enter text to summarize, the text will be cleaned and truncated on Spaces. Narrative, academic (both papers and lecture transcription), and article text work well. May take a bit to generate depending on the input text :)", | |
| ) | |
| with gr.Column(): | |
| gr.Markdown("## Generate Summary") | |
| gr.Markdown( | |
| "Summarization should take ~1-2 minutes for most settings, but may extend up to 5-10 minutes in some scenarios." | |
| ) | |
| summarize_button = gr.Button( | |
| "Summarize!", | |
| variant="primary", | |
| ) | |
| output_text = gr.HTML("<p><em>Output will appear below:</em></p>") | |
| gr.Markdown("### Summary Output") | |
| summary_text = gr.HTML( | |
| label="Summary", value="<i>Summary will appear here!</i>" | |
| ) | |
| with gr.Column(): | |
| gr.Markdown("Export & Summary Scores") | |
| with gr.Row(variant="panel"): | |
| text_file = gr.File( | |
| label="Download as Text File", | |
| file_count="single", | |
| type="file", | |
| interactive=False, | |
| ) | |
| with gr.Row(variant="panel"): | |
| gr.Markdown( | |
| "The summary scores can be thought of as representing the quality of the summary. less-negative numbers (closer to 0) are better:" | |
| ) | |
| summary_scores = gr.Textbox( | |
| label="Summary Scores", | |
| placeholder="Summary scores will appear here", | |
| ) | |
| gr.Markdown("---") | |
| with gr.Column(): | |
| gr.Markdown("### Advanced Settings") | |
| with gr.Row(variant="compact"): | |
| length_penalty = gr.Slider( | |
| minimum=0.5, | |
| maximum=1.0, | |
| label="length penalty", | |
| value=0.7, | |
| step=0.05, | |
| ) | |
| token_batch_length = gr.Radio( | |
| choices=[512, 1024, 1536, 2048], | |
| label="token batch length", | |
| value=1536, | |
| ) | |
| with gr.Row(variant="compact"): | |
| repetition_penalty = gr.Slider( | |
| minimum=1.0, | |
| maximum=5.0, | |
| label="repetition penalty", | |
| value=1.5, | |
| step=0.1, | |
| ) | |
| no_repeat_ngram_size = gr.Radio( | |
| choices=[2, 3, 4], | |
| label="no repeat ngram size", | |
| value=3, | |
| ) | |
| with gr.Column(): | |
| gr.Markdown("### About") | |
| gr.Markdown( | |
| "- Models are fine-tuned on the [BookSum dataset](https://arxiv.org/abs/2105.08209). The goal was to create a model that generalizes well and is useful for summarizing text in academic and everyday use." | |
| ) | |
| gr.Markdown( | |
| "- _Update April 2023:_ Additional models fine-tuned on the [PLOS](https://huggingface.co/datasets/pszemraj/scientific_lay_summarisation-plos-norm) and [ELIFE](https://huggingface.co/datasets/pszemraj/scientific_lay_summarisation-elife-norm) subsets of the [scientific lay summaries](https://arxiv.org/abs/2210.09932) dataset are available (see dropdown at the top)." | |
| ) | |
| gr.Markdown( | |
| "Adjust the max input words & max PDF pages for OCR by duplicating this space and [setting the environment variables](https://huggingface.co/docs/hub/spaces-overview#managing-secrets) `APP_MAX_WORDS` and `APP_OCR_MAX_PAGES` to the desired integer values." | |
| ) | |
| gr.Markdown("---") | |
| load_examples_button.click( | |
| fn=load_single_example_text, inputs=[example_name], outputs=[input_text] | |
| ) | |
| load_file_button.click( | |
| fn=load_uploaded_file, inputs=uploaded_file, outputs=[input_text] | |
| ) | |
| summarize_button.click( | |
| fn=proc_submission, | |
| inputs=[ | |
| input_text, | |
| model_name, | |
| num_beams, | |
| token_batch_length, | |
| length_penalty, | |
| repetition_penalty, | |
| no_repeat_ngram_size, | |
| ], | |
| outputs=[output_text, summary_text, summary_scores, text_file], | |
| ) | |
| demo.launch(enable_queue=True) | |