Spaces:
Runtime error
Runtime error
๐ add words
Browse filesSigned-off-by: peter szemraj <peterszemraj@gmail.com>
app.py
CHANGED
|
@@ -86,8 +86,8 @@ def proc_submission(
|
|
| 86 |
|
| 87 |
_summaries = summarize_via_tokenbatches(
|
| 88 |
tr_in,
|
| 89 |
-
model_sm if
|
| 90 |
-
tokenizer_sm if
|
| 91 |
batch_length=token_batch_length,
|
| 92 |
**settings,
|
| 93 |
)
|
|
@@ -211,7 +211,7 @@ if __name__ == "__main__":
|
|
| 211 |
|
| 212 |
gr.Markdown("# Document Summarization with Long-Document Transformers")
|
| 213 |
gr.Markdown(
|
| 214 |
-
"
|
| 215 |
)
|
| 216 |
with gr.Column():
|
| 217 |
|
|
@@ -223,7 +223,7 @@ if __name__ == "__main__":
|
|
| 223 |
with gr.Column(scale=0.5, variant='compact'):
|
| 224 |
|
| 225 |
model_size = gr.Radio(
|
| 226 |
-
choices=["base", "large"], label="Model Variant", value="base"
|
| 227 |
)
|
| 228 |
num_beams = gr.Radio(
|
| 229 |
choices=[2, 3, 4],
|
|
@@ -308,13 +308,7 @@ if __name__ == "__main__":
|
|
| 308 |
with gr.Column():
|
| 309 |
gr.Markdown("### About the Model")
|
| 310 |
gr.Markdown(
|
| 311 |
-
"
|
| 312 |
-
)
|
| 313 |
-
gr.Markdown(
|
| 314 |
-
"- The two most important parameters-empirically-are the `num_beams` and `token_batch_length`. However, increasing these will also increase the amount of time it takes to generate a summary. The `length_penalty` and `repetition_penalty` parameters are also important for the model to generate good summaries."
|
| 315 |
-
)
|
| 316 |
-
gr.Markdown(
|
| 317 |
-
"- The model can be used with tag [pszemraj/led-large-book-summary](https://huggingface.co/pszemraj/led-large-book-summary). See the model card for details on usage & a notebook for a tutorial."
|
| 318 |
)
|
| 319 |
gr.Markdown("---")
|
| 320 |
|
|
|
|
| 86 |
|
| 87 |
_summaries = summarize_via_tokenbatches(
|
| 88 |
tr_in,
|
| 89 |
+
model_sm if "base" in model_size.lower() else model,
|
| 90 |
+
tokenizer_sm if "base" in model_size.lower() else tokenizer,
|
| 91 |
batch_length=token_batch_length,
|
| 92 |
**settings,
|
| 93 |
)
|
|
|
|
| 211 |
|
| 212 |
gr.Markdown("# Document Summarization with Long-Document Transformers")
|
| 213 |
gr.Markdown(
|
| 214 |
+
"This is an example use case for fine-tuned long document transformers. The model is trained on book summaries (via the BookSum dataset). The models in this demo are [LongT5-base](https://huggingface.co/pszemraj/long-t5-tglobal-base-16384-book-summary) and [Pegasus-X-Large](https://huggingface.co/pszemraj/pegasus-x-large-book-summary)."
|
| 215 |
)
|
| 216 |
with gr.Column():
|
| 217 |
|
|
|
|
| 223 |
with gr.Column(scale=0.5, variant='compact'):
|
| 224 |
|
| 225 |
model_size = gr.Radio(
|
| 226 |
+
choices=["LongT5-base", "Pegasus-X-large"], label="Model Variant", value="base"
|
| 227 |
)
|
| 228 |
num_beams = gr.Radio(
|
| 229 |
choices=[2, 3, 4],
|
|
|
|
| 308 |
with gr.Column():
|
| 309 |
gr.Markdown("### About the Model")
|
| 310 |
gr.Markdown(
|
| 311 |
+
"These models are fine-tuned on the [BookSum dataset](https://arxiv.org/abs/2105.08209).The goal was to create a model that can generalize well and is useful in summarizing lots of text in academic and daily usage."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 312 |
)
|
| 313 |
gr.Markdown("---")
|
| 314 |
|