Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import spaces | |
| import torch | |
| from diffusers import AutoencoderKL, TCDScheduler | |
| from diffusers.models.model_loading_utils import load_state_dict | |
| from gradio_imageslider import ImageSlider | |
| from huggingface_hub import hf_hub_download | |
| from controlnet_union import ControlNetModel_Union | |
| from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline | |
| from PIL import Image, ImageDraw | |
| import numpy as np | |
| MODELS = { | |
| "RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning", | |
| } | |
| config_file = hf_hub_download( | |
| "xinsir/controlnet-union-sdxl-1.0", | |
| filename="config_promax.json", | |
| ) | |
| config = ControlNetModel_Union.load_config(config_file) | |
| controlnet_model = ControlNetModel_Union.from_config(config) | |
| model_file = hf_hub_download( | |
| "xinsir/controlnet-union-sdxl-1.0", | |
| filename="diffusion_pytorch_model_promax.safetensors", | |
| ) | |
| state_dict = load_state_dict(model_file) | |
| model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model( | |
| controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0" | |
| ) | |
| model.to(device="cuda", dtype=torch.float16) | |
| vae = AutoencoderKL.from_pretrained( | |
| "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 | |
| ).to("cuda") | |
| pipe = StableDiffusionXLFillPipeline.from_pretrained( | |
| "SG161222/RealVisXL_V5.0_Lightning", | |
| torch_dtype=torch.float16, | |
| vae=vae, | |
| controlnet=model, | |
| variant="fp16", | |
| ).to("cuda") | |
| pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config) | |
| prompt = "high quality" | |
| ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| ) = pipe.encode_prompt(prompt, "cuda", True) | |
| """ | |
| def fill_image(image, model_selection): | |
| margin = 256 | |
| overlap = 24 | |
| # Open the original image | |
| source = image # Changed from image["background"] to match new input format | |
| # Calculate new output size | |
| output_size = (source.width + 2*margin, source.height + 2*margin) | |
| # Create a white background | |
| background = Image.new('RGB', output_size, (255, 255, 255)) | |
| # Calculate position to paste the original image | |
| position = (margin, margin) | |
| # Paste the original image onto the white background | |
| background.paste(source, position) | |
| # Create the mask | |
| mask = Image.new('L', output_size, 255) # Start with all white | |
| mask_draw = ImageDraw.Draw(mask) | |
| mask_draw.rectangle([ | |
| (position[0] + overlap, position[1] + overlap), | |
| (position[0] + source.width - overlap, position[1] + source.height - overlap) | |
| ], fill=0) | |
| # Prepare the image for ControlNet | |
| cnet_image = background.copy() | |
| cnet_image.paste(0, (0, 0), mask) | |
| for image in pipe( | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| image=cnet_image, | |
| ): | |
| yield image, cnet_image | |
| image = image.convert("RGBA") | |
| cnet_image.paste(image, (0, 0), mask) | |
| yield background, cnet_image | |
| """ | |
| def fill_image(image, model_selection): | |
| source = image | |
| target_ratio=(9, 16) | |
| target_height=1280 | |
| overlap=48 | |
| fade_width=24 | |
| # Calculate target dimensions | |
| target_width = (target_height * target_ratio[0]) // target_ratio[1] | |
| # Resize the source image to fit within the target dimensions while maintaining aspect ratio | |
| source_aspect = source.width / source.height | |
| target_aspect = target_width / target_height | |
| if source_aspect > target_aspect: | |
| # Image is wider than target ratio, fit to width | |
| new_width = target_width | |
| new_height = int(new_width / source_aspect) | |
| else: | |
| # Image is taller than target ratio, fit to height | |
| new_height = target_height | |
| new_width = int(new_height * source_aspect) | |
| resized_source = source.resize((new_width, new_height), Image.LANCZOS) | |
| # Calculate margins | |
| margin_x = (target_width - new_width) // 2 | |
| margin_y = (target_height - new_height) // 2 | |
| # Create a white background | |
| background = Image.new('RGB', (target_width, target_height), (255, 255, 255)) | |
| # Paste the resized image onto the white background | |
| position = (margin_x, margin_y) | |
| background.paste(resized_source, position) | |
| # Create the mask with gradient edges | |
| mask = Image.new('L', (target_width, target_height), 255) | |
| mask_array = np.array(mask) | |
| # Create gradient for left and right edges | |
| for i in range(fade_width): | |
| alpha = i / fade_width | |
| mask_array[:, margin_x+overlap+i] = np.minimum(mask_array[:, margin_x+overlap+i], int(255 * (1 - alpha))) | |
| mask_array[:, margin_x+new_width-overlap-i-1] = np.minimum(mask_array[:, margin_x+new_width-overlap-i-1], int(255 * (1 - alpha))) | |
| # Create gradient for top and bottom edges | |
| for i in range(fade_width): | |
| alpha = i / fade_width | |
| mask_array[margin_y+overlap+i, :] = np.minimum(mask_array[margin_y+overlap+i, :], int(255 * (1 - alpha))) | |
| mask_array[margin_y+new_height-overlap-i-1, :] = np.minimum(mask_array[margin_y+new_height-overlap-i-1, :], int(255 * (1 - alpha))) | |
| # Set the center to black | |
| mask_array[margin_y+overlap+fade_width:margin_y+new_height-overlap-fade_width, | |
| margin_x+overlap+fade_width:margin_x+new_width-overlap-fade_width] = 0 | |
| mask = Image.fromarray(mask_array.astype('uint8'), 'L') | |
| # Prepare the image for ControlNet | |
| cnet_image = background.copy() | |
| cnet_image.paste(0, (0, 0), mask) | |
| for image in pipe( | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| image=cnet_image, | |
| ): | |
| yield image, cnet_image | |
| image = image.convert("RGBA") | |
| cnet_image.paste(image, (0, 0), mask) | |
| yield background, cnet_image | |
| def clear_result(): | |
| return gr.update(value=None) | |
| css = """ | |
| .gradio-container { | |
| width: 1024px !important; | |
| } | |
| """ | |
| title = """<h1 align="center">Diffusers Image Fill</h1> | |
| <div align="center">Draw the mask over the subject you want to erase or change.</div> | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| gr.HTML(title) | |
| run_button = gr.Button("Generate") | |
| with gr.Row(): | |
| input_image = gr.Image( | |
| type="pil", | |
| label="Input Image", | |
| sources=["upload"], | |
| ) | |
| result = ImageSlider( | |
| interactive=False, | |
| label="Generated Image", | |
| ) | |
| model_selection = gr.Dropdown( | |
| choices=list(MODELS.keys()), | |
| value="RealVisXL V5.0 Lightning", | |
| label="Model", | |
| ) | |
| run_button.click( | |
| fn=clear_result, | |
| inputs=None, | |
| outputs=result, | |
| ).then( | |
| fn=fill_image, | |
| inputs=[input_image, model_selection], | |
| outputs=result, | |
| ) | |
| demo.launch(share=False) | |