Spaces:
Sleeping
Sleeping
File size: 7,716 Bytes
ae17242 9a4ddf6 ae17242 cfa48e9 ae17242 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import pandas as pd
from sklearn.utils import shuffle
from googletrans import Translator
from tqdm.asyncio import tqdm_asyncio
from pathlib import Path
import asyncio
import os
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
from transformers import TrainingArguments, Trainer, AutoTokenizer, AutoConfig, AutoModelForSequenceClassification, AutoModelForCausalLM
import torch
import gradio as gr
data = pd.read_parquet("hf://datasets/boltuix/emotions-dataset/emotions_dataset.parquet")
groups = {
"neutral": "neutral",
"anger": "angry",
"love": "joy",
"happiness": "fun",
"sadness": "sorrow",
"surprise": "surprised"
}
data = data[data['Label'].isin(groups.keys())].copy()
data['Label'] = data['Label'].map(groups)
seeds = [1, 2, 3, 4]
async def translate_all(seed, texts):
semaphore = asyncio.Semaphore(12)
async def sem_translate_task(text, idx):
async with semaphore:
async with Translator() as translator:
result = await translator.translate(text, src='en', dest='ja')
return result.text, idx
tasks = [asyncio.create_task(sem_translate_task(text, idx)) for idx, text in enumerate(texts)]
translated = [None] * len(texts)
for coro in tqdm_asyncio.as_completed(tasks, total=len(tasks)):
result, index = await coro
translated[index] = result
return translated
async def sample_all(seed: int, progress=gr.Progress(track_tqdm=True)):
files = []
for seed in seeds:
try:
filename = f"./data/SampledData_{seed}.csv"
if not os.path.exists(filename):
Path("./data").mkdir(parents=True, exist_ok=True)
sampled = (
data.groupby('Label', group_keys=False)
.apply(lambda x: x.sample(n=1000, random_state=int(seed)))
)
sampled = shuffle(sampled).reset_index(drop=True)
texts = sampled["Sentence"].tolist()
translated = await translate_all(seed, texts)
sampled["Sentence"] = translated
sampled.to_csv(filename, index=False)
files.append(filename)
else:
files.append(filename)
except Exception as e:
raise gr.Error(e)
return files
class Dataset(torch.utils.data.Dataset):
def __init__(self, encodings, labels=None):
self.encodings = encodings
self.labels = labels
def __getitem__(self, idx):
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
if self.labels:
item["labels"] = torch.tensor(self.labels[idx])
return item
def __len__(self):
return len(self.encodings["input_ids"])
def prepare_dataset(df, tokenizer):
X = list(df["Sentence"])
y = list(df["Label"])
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, stratify=y, random_state=42)
X_train_tokenized = tokenizer(X_train, padding=True, truncation=True, max_length=512)
X_val_tokenized = tokenizer(X_val, padding=True, truncation=True, max_length=512)
train_dataset = Dataset(X_train_tokenized, y_train)
val_dataset = Dataset(X_val_tokenized, y_val)
return train_dataset, val_dataset
def compute_metrics(eval_pred):
logits, labels = eval_pred
preds = logits[0].argmax(axis=-1)
accuracy = accuracy_score(labels, preds)
precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average='weighted')
return {
'accuracy': accuracy,
'precision': precision,
'recall': recall,
'f1': f1,
}
def train_model():
id2label = {
0: "neutral",
1: "angry",
2: "fun",
3: "joy",
4: "sorrow",
5: "surprised"
}
label2id = {
"neutral": 0,
"angry": 1,
"fun": 2,
"joy": 3,
"sorrow": 4,
"surprised": 5
}
tokenizer = AutoTokenizer.from_pretrained("line-corporation/line-distilbert-base-japanese", trust_remote_code=True)
model_paths = []
metric_str_all = []
for seed in seeds:
csv_path = f"./data/SampledData_{seed}.csv"
if not os.path.exists(csv_path):
return f"File {csv_path} not found! กรุณาสร้างไฟล์ก่อน.", None
df = pd.read_csv(csv_path)
train_dataset, val_dataset = prepare_dataset(df, tokenizer)
if not os.path.exists(f"./output/{seed}/final_model/model.safetensors"):
model = AutoModelForSequenceClassification.from_pretrained(
"line-corporation/line-distilbert-base-japanese",
use_safetensors=True,
num_labels=6,
label2id=label2id,
id2label=id2label
)
training_args = TrainingArguments(
output_dir=f"./output/{seed}",
seed=seed,
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
eval_strategy="epoch",
save_strategy="epoch",
num_train_epochs=5,
fp16=True,
logging_dir=f"./logs/{seed}",
logging_steps=100,
load_best_model_at_end=True
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
tokenizer=tokenizer,
compute_metrics=compute_metrics
)
trainer.train()
trainer.save_model(f"./output/{seed}/final_model")
tokenizer.save_pretrained(f"./output/{seed}/final_model")
model_paths.append(f"./output/{seed}/final_model")
metrics = trainer.evaluate()
metric_str = f"Seed {seed}:\n" + "\n".join([f"{k}: {v:.4f}" for k, v in metrics.items()])
metric_str_all.append(metric_str)
else:
model_paths.append(f"./output/{seed}/final_model")
if not os.path.exists(f"./VRM-Emotions/model.safetensors"):
models = [AutoModelForSequenceClassification.from_pretrained(p) for p in model_paths]
state_dicts = [m.state_dict() for m in models]
avg_state_dict = {}
for key in state_dicts[0].keys():
avg_param = torch.stack([sd[key].float() for sd in state_dicts], dim=0).mean(dim=0)
avg_state_dict[key] = avg_param
avg_model = AutoModelForSequenceClassification.from_pretrained(model_paths[0])
avg_model.load_state_dict(avg_state_dict)
avg_model.save_pretrained("./VRM-Emotions")
tokenizer.save_pretrained("./VRM-Emotions")
return "\n\n".join(metric_str_all), [os.path.join("./VRM-Emotions", file) for file in os.listdir("./VRM-Emotions")]
async def train_model_async(progress=gr.Progress(track_tqdm=True)):
try:
return await asyncio.to_thread(train_model)
except Exception as e:
raise gr.Error(e)
with gr.Blocks() as demo:
with gr.Tab("Prepare Dataset"):
dataset_files = gr.Files(label="CSV Files")
sample_btn = gr.Button("Get Datasets")
sample_btn.click(sample_all, inputs=None, outputs=dataset_files)
with gr.Tab("Train Model"):
train_results = gr.TextArea(label="Metrics", interactive=False)
models_files = gr.Files(label="Trained Model")
train_btn = gr.Button("Train All")
train_btn.click(train_model_async, inputs=None, outputs=[train_results, models_files])
demo.launch() |