Spaces:
Running
Running
| import argparse | |
| import os | |
| import gradio as gr | |
| import huggingface_hub | |
| import numpy as np | |
| import onnxruntime as rt | |
| import pandas as pd | |
| from PIL import Image | |
| TITLE = "WaifuDiffusion Tagger" | |
| DESCRIPTION = """ | |
| Demo for the WaifuDiffusion tagger models | |
| Example image by [γ»γβββ](https://www.pixiv.net/en/users/43565085) | |
| """ | |
| HF_TOKEN = os.environ["HF_TOKEN"] | |
| # Dataset v3 series of models: | |
| SWINV2_MODEL_DSV3_REPO = "SmilingWolf/wd-swinv2-tagger-v3" | |
| CONV_MODEL_DSV3_REPO = "SmilingWolf/wd-convnext-tagger-v3" | |
| VIT_MODEL_DSV3_REPO = "SmilingWolf/wd-vit-tagger-v3" | |
| # Dataset v2 series of models: | |
| MOAT_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-moat-tagger-v2" | |
| SWIN_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-swinv2-tagger-v2" | |
| CONV_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-convnext-tagger-v2" | |
| CONV2_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-convnextv2-tagger-v2" | |
| VIT_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-vit-tagger-v2" | |
| # Files to download from the repos | |
| MODEL_FILENAME = "model.onnx" | |
| LABEL_FILENAME = "selected_tags.csv" | |
| # https://github.com/toriato/stable-diffusion-webui-wd14-tagger/blob/a9eacb1eff904552d3012babfa28b57e1d3e295c/tagger/ui.py#L368 | |
| kaomojis = [ | |
| "0_0", | |
| "(o)_(o)", | |
| "+_+", | |
| "+_-", | |
| "._.", | |
| "<o>_<o>", | |
| "<|>_<|>", | |
| "=_=", | |
| ">_<", | |
| "3_3", | |
| "6_9", | |
| ">_o", | |
| "@_@", | |
| "^_^", | |
| "o_o", | |
| "u_u", | |
| "x_x", | |
| "|_|", | |
| "||_||", | |
| ] | |
| def parse_args() -> argparse.Namespace: | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--score-slider-step", type=float, default=0.05) | |
| parser.add_argument("--score-general-threshold", type=float, default=0.35) | |
| parser.add_argument("--score-character-threshold", type=float, default=0.85) | |
| parser.add_argument("--share", action="store_true") | |
| return parser.parse_args() | |
| def load_labels(dataframe) -> list[str]: | |
| name_series = dataframe["name"] | |
| name_series = name_series.map( | |
| lambda x: x.replace("_", " ") if x not in kaomojis else x | |
| ) | |
| tag_names = name_series.tolist() | |
| rating_indexes = list(np.where(dataframe["category"] == 9)[0]) | |
| general_indexes = list(np.where(dataframe["category"] == 0)[0]) | |
| character_indexes = list(np.where(dataframe["category"] == 4)[0]) | |
| return tag_names, rating_indexes, general_indexes, character_indexes | |
| def mcut_threshold(probs): | |
| """ | |
| Maximum Cut Thresholding (MCut) | |
| Largeron, C., Moulin, C., & Gery, M. (2012). MCut: A Thresholding Strategy | |
| for Multi-label Classification. In 11th International Symposium, IDA 2012 | |
| (pp. 172-183). | |
| """ | |
| sorted_probs = probs[probs.argsort()[::-1]] | |
| difs = sorted_probs[:-1] - sorted_probs[1:] | |
| t = difs.argmax() | |
| thresh = (sorted_probs[t] + sorted_probs[t + 1]) / 2 | |
| return thresh | |
| class Predictor: | |
| def __init__(self): | |
| self.model_target_size = None | |
| self.last_loaded_repo = None | |
| def download_model(self, model_repo): | |
| csv_path = huggingface_hub.hf_hub_download( | |
| model_repo, | |
| LABEL_FILENAME, | |
| use_auth_token=HF_TOKEN, | |
| ) | |
| model_path = huggingface_hub.hf_hub_download( | |
| model_repo, | |
| MODEL_FILENAME, | |
| use_auth_token=HF_TOKEN, | |
| ) | |
| return csv_path, model_path | |
| def load_model(self, model_repo): | |
| if model_repo == self.last_loaded_repo: | |
| return | |
| csv_path, model_path = self.download_model(model_repo) | |
| tags_df = pd.read_csv(csv_path) | |
| sep_tags = load_labels(tags_df) | |
| self.tag_names = sep_tags[0] | |
| self.rating_indexes = sep_tags[1] | |
| self.general_indexes = sep_tags[2] | |
| self.character_indexes = sep_tags[3] | |
| model = rt.InferenceSession(model_path) | |
| _, height, width, _ = model.get_inputs()[0].shape | |
| self.model_target_size = height | |
| self.last_loaded_repo = model_repo | |
| self.model = model | |
| def prepare_image(self, image): | |
| target_size = self.model_target_size | |
| canvas = Image.new("RGBA", image.size, (255, 255, 255)) | |
| canvas.alpha_composite(image) | |
| image = canvas.convert("RGB") | |
| # Pad image to square | |
| image_shape = image.size | |
| max_dim = max(image_shape) | |
| pad_left = (max_dim - image_shape[0]) // 2 | |
| pad_top = (max_dim - image_shape[1]) // 2 | |
| padded_image = Image.new("RGB", (max_dim, max_dim), (255, 255, 255)) | |
| padded_image.paste(image, (pad_left, pad_top)) | |
| # Resize | |
| if max_dim != target_size: | |
| padded_image = padded_image.resize( | |
| (target_size, target_size), | |
| Image.BICUBIC, | |
| ) | |
| # Convert to numpy array | |
| image_array = np.asarray(padded_image, dtype=np.float32) | |
| # Convert PIL-native RGB to BGR | |
| image_array = image_array[:, :, ::-1] | |
| return np.expand_dims(image_array, axis=0) | |
| def predict( | |
| self, | |
| image, | |
| model_repo, | |
| general_thresh, | |
| general_mcut_enabled, | |
| character_thresh, | |
| character_mcut_enabled, | |
| ): | |
| self.load_model(model_repo) | |
| image = self.prepare_image(image) | |
| input_name = self.model.get_inputs()[0].name | |
| label_name = self.model.get_outputs()[0].name | |
| preds = self.model.run([label_name], {input_name: image})[0] | |
| labels = list(zip(self.tag_names, preds[0].astype(float))) | |
| # First 4 labels are actually ratings: pick one with argmax | |
| ratings_names = [labels[i] for i in self.rating_indexes] | |
| rating = dict(ratings_names) | |
| # Then we have general tags: pick any where prediction confidence > threshold | |
| general_names = [labels[i] for i in self.general_indexes] | |
| if general_mcut_enabled: | |
| general_probs = np.array([x[1] for x in general_names]) | |
| general_thresh = mcut_threshold(general_probs) | |
| general_res = [x for x in general_names if x[1] > general_thresh] | |
| general_res = dict(general_res) | |
| # Everything else is characters: pick any where prediction confidence > threshold | |
| character_names = [labels[i] for i in self.character_indexes] | |
| if character_mcut_enabled: | |
| character_probs = np.array([x[1] for x in character_names]) | |
| character_thresh = mcut_threshold(character_probs) | |
| character_thresh = max(0.15, character_thresh) | |
| character_res = [x for x in character_names if x[1] > character_thresh] | |
| character_res = dict(character_res) | |
| sorted_general_strings = sorted( | |
| general_res.items(), | |
| key=lambda x: x[1], | |
| reverse=True, | |
| ) | |
| sorted_general_strings = [x[0] for x in sorted_general_strings] | |
| sorted_general_strings = ( | |
| ", ".join(sorted_general_strings).replace("(", "\(").replace(")", "\)") | |
| ) | |
| return sorted_general_strings, rating, character_res, general_res | |
| def main(): | |
| args = parse_args() | |
| predictor = Predictor() | |
| dropdown_list = [ | |
| SWINV2_MODEL_DSV3_REPO, | |
| CONV_MODEL_DSV3_REPO, | |
| VIT_MODEL_DSV3_REPO, | |
| MOAT_MODEL_DSV2_REPO, | |
| SWIN_MODEL_DSV2_REPO, | |
| CONV_MODEL_DSV2_REPO, | |
| CONV2_MODEL_DSV2_REPO, | |
| VIT_MODEL_DSV2_REPO, | |
| ] | |
| with gr.Blocks(title=TITLE) as demo: | |
| with gr.Column(): | |
| gr.Markdown( | |
| value=f"<h1 style='text-align: center; margin-bottom: 1rem'>{TITLE}</h1>" | |
| ) | |
| gr.Markdown(value=DESCRIPTION) | |
| with gr.Row(): | |
| with gr.Column(variant="panel"): | |
| image = gr.Image(type="pil", image_mode="RGBA", label="Input") | |
| model_repo = gr.Dropdown( | |
| dropdown_list, | |
| value=SWINV2_MODEL_DSV3_REPO, | |
| label="Model", | |
| ) | |
| with gr.Row(): | |
| general_thresh = gr.Slider( | |
| 0, | |
| 1, | |
| step=args.score_slider_step, | |
| value=args.score_general_threshold, | |
| label="General Tags Threshold", | |
| scale=3, | |
| ) | |
| general_mcut_enabled = gr.Checkbox( | |
| value=False, | |
| label="Use MCut threshold", | |
| scale=1, | |
| ) | |
| with gr.Row(): | |
| character_thresh = gr.Slider( | |
| 0, | |
| 1, | |
| step=args.score_slider_step, | |
| value=args.score_character_threshold, | |
| label="Character Tags Threshold", | |
| scale=3, | |
| ) | |
| character_mcut_enabled = gr.Checkbox( | |
| value=False, | |
| label="Use MCut threshold", | |
| scale=1, | |
| ) | |
| with gr.Row(): | |
| clear = gr.ClearButton( | |
| components=[ | |
| image, | |
| model_repo, | |
| general_thresh, | |
| general_mcut_enabled, | |
| character_thresh, | |
| character_mcut_enabled, | |
| ], | |
| variant="secondary", | |
| size="lg", | |
| ) | |
| submit = gr.Button(value="Submit", variant="primary", size="lg") | |
| with gr.Column(variant="panel"): | |
| sorted_general_strings = gr.Textbox(label="Output (string)") | |
| rating = gr.Label(label="Rating") | |
| character_res = gr.Label(label="Output (characters)") | |
| general_res = gr.Label(label="Output (tags)") | |
| clear.add( | |
| [ | |
| sorted_general_strings, | |
| rating, | |
| character_res, | |
| general_res, | |
| ] | |
| ) | |
| submit.click( | |
| predictor.predict, | |
| inputs=[ | |
| image, | |
| model_repo, | |
| general_thresh, | |
| general_mcut_enabled, | |
| character_thresh, | |
| character_mcut_enabled, | |
| ], | |
| outputs=[sorted_general_strings, rating, character_res, general_res], | |
| ) | |
| gr.Examples( | |
| [["power.jpg", SWINV2_MODEL_DSV3_REPO, 0.35, False, 0.85, False]], | |
| inputs=[ | |
| image, | |
| model_repo, | |
| general_thresh, | |
| general_mcut_enabled, | |
| character_thresh, | |
| character_mcut_enabled, | |
| ], | |
| ) | |
| demo.queue(max_size=10) | |
| demo.launch() | |
| if __name__ == "__main__": | |
| main() | |