Spaces:
Running
on
Zero
Running
on
Zero
| # https://github.com/AILab-CVC/VideoCrafter | |
| # https://github.com/Doubiiu/DynamiCrafter | |
| # https://github.com/ToonCrafter/ToonCrafter | |
| # Then edited by lllyasviel | |
| from functools import partial | |
| from abc import abstractmethod | |
| import torch | |
| import math | |
| import torch.nn as nn | |
| from einops import rearrange, repeat | |
| import torch.nn.functional as F | |
| from diffusers_vdm.basics import checkpoint | |
| from diffusers_vdm.basics import ( | |
| zero_module, | |
| conv_nd, | |
| linear, | |
| avg_pool_nd, | |
| normalization | |
| ) | |
| from diffusers_vdm.attention import SpatialTransformer, TemporalTransformer | |
| from huggingface_hub import PyTorchModelHubMixin | |
| def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False): | |
| """ | |
| Create sinusoidal timestep embeddings. | |
| :param timesteps: a 1-D Tensor of N indices, one per batch element. | |
| These may be fractional. | |
| :param dim: the dimension of the output. | |
| :param max_period: controls the minimum frequency of the embeddings. | |
| :return: an [N x dim] Tensor of positional embeddings. | |
| """ | |
| if not repeat_only: | |
| half = dim // 2 | |
| freqs = torch.exp( | |
| -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half | |
| ).to(device=timesteps.device) | |
| args = timesteps[:, None].float() * freqs[None] | |
| embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
| if dim % 2: | |
| embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
| else: | |
| embedding = repeat(timesteps, 'b -> b d', d=dim) | |
| return embedding | |
| class TimestepBlock(nn.Module): | |
| """ | |
| Any module where forward() takes timestep embeddings as a second argument. | |
| """ | |
| def forward(self, x, emb): | |
| """ | |
| Apply the module to `x` given `emb` timestep embeddings. | |
| """ | |
| class TimestepEmbedSequential(nn.Sequential, TimestepBlock): | |
| """ | |
| A sequential module that passes timestep embeddings to the children that | |
| support it as an extra input. | |
| """ | |
| def forward(self, x, emb, context=None, batch_size=None): | |
| for layer in self: | |
| if isinstance(layer, TimestepBlock): | |
| x = layer(x, emb, batch_size=batch_size) | |
| elif isinstance(layer, SpatialTransformer): | |
| x = layer(x, context) | |
| elif isinstance(layer, TemporalTransformer): | |
| x = rearrange(x, '(b f) c h w -> b c f h w', b=batch_size) | |
| x = layer(x, context) | |
| x = rearrange(x, 'b c f h w -> (b f) c h w') | |
| else: | |
| x = layer(x) | |
| return x | |
| class Downsample(nn.Module): | |
| """ | |
| A downsampling layer with an optional convolution. | |
| :param channels: channels in the inputs and outputs. | |
| :param use_conv: a bool determining if a convolution is applied. | |
| :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
| downsampling occurs in the inner-two dimensions. | |
| """ | |
| def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): | |
| super().__init__() | |
| self.channels = channels | |
| self.out_channels = out_channels or channels | |
| self.use_conv = use_conv | |
| self.dims = dims | |
| stride = 2 if dims != 3 else (1, 2, 2) | |
| if use_conv: | |
| self.op = conv_nd( | |
| dims, self.channels, self.out_channels, 3, stride=stride, padding=padding | |
| ) | |
| else: | |
| assert self.channels == self.out_channels | |
| self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) | |
| def forward(self, x): | |
| assert x.shape[1] == self.channels | |
| return self.op(x) | |
| class Upsample(nn.Module): | |
| """ | |
| An upsampling layer with an optional convolution. | |
| :param channels: channels in the inputs and outputs. | |
| :param use_conv: a bool determining if a convolution is applied. | |
| :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
| upsampling occurs in the inner-two dimensions. | |
| """ | |
| def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): | |
| super().__init__() | |
| self.channels = channels | |
| self.out_channels = out_channels or channels | |
| self.use_conv = use_conv | |
| self.dims = dims | |
| if use_conv: | |
| self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding) | |
| def forward(self, x): | |
| assert x.shape[1] == self.channels | |
| if self.dims == 3: | |
| x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode='nearest') | |
| else: | |
| x = F.interpolate(x, scale_factor=2, mode='nearest') | |
| if self.use_conv: | |
| x = self.conv(x) | |
| return x | |
| class ResBlock(TimestepBlock): | |
| """ | |
| A residual block that can optionally change the number of channels. | |
| :param channels: the number of input channels. | |
| :param emb_channels: the number of timestep embedding channels. | |
| :param dropout: the rate of dropout. | |
| :param out_channels: if specified, the number of out channels. | |
| :param use_conv: if True and out_channels is specified, use a spatial | |
| convolution instead of a smaller 1x1 convolution to change the | |
| channels in the skip connection. | |
| :param dims: determines if the signal is 1D, 2D, or 3D. | |
| :param up: if True, use this block for upsampling. | |
| :param down: if True, use this block for downsampling. | |
| :param use_temporal_conv: if True, use the temporal convolution. | |
| :param use_image_dataset: if True, the temporal parameters will not be optimized. | |
| """ | |
| def __init__( | |
| self, | |
| channels, | |
| emb_channels, | |
| dropout, | |
| out_channels=None, | |
| use_scale_shift_norm=False, | |
| dims=2, | |
| use_checkpoint=False, | |
| use_conv=False, | |
| up=False, | |
| down=False, | |
| use_temporal_conv=False, | |
| tempspatial_aware=False | |
| ): | |
| super().__init__() | |
| self.channels = channels | |
| self.emb_channels = emb_channels | |
| self.dropout = dropout | |
| self.out_channels = out_channels or channels | |
| self.use_conv = use_conv | |
| self.use_checkpoint = use_checkpoint | |
| self.use_scale_shift_norm = use_scale_shift_norm | |
| self.use_temporal_conv = use_temporal_conv | |
| self.in_layers = nn.Sequential( | |
| normalization(channels), | |
| nn.SiLU(), | |
| conv_nd(dims, channels, self.out_channels, 3, padding=1), | |
| ) | |
| self.updown = up or down | |
| if up: | |
| self.h_upd = Upsample(channels, False, dims) | |
| self.x_upd = Upsample(channels, False, dims) | |
| elif down: | |
| self.h_upd = Downsample(channels, False, dims) | |
| self.x_upd = Downsample(channels, False, dims) | |
| else: | |
| self.h_upd = self.x_upd = nn.Identity() | |
| self.emb_layers = nn.Sequential( | |
| nn.SiLU(), | |
| nn.Linear( | |
| emb_channels, | |
| 2 * self.out_channels if use_scale_shift_norm else self.out_channels, | |
| ), | |
| ) | |
| self.out_layers = nn.Sequential( | |
| normalization(self.out_channels), | |
| nn.SiLU(), | |
| nn.Dropout(p=dropout), | |
| zero_module(nn.Conv2d(self.out_channels, self.out_channels, 3, padding=1)), | |
| ) | |
| if self.out_channels == channels: | |
| self.skip_connection = nn.Identity() | |
| elif use_conv: | |
| self.skip_connection = conv_nd(dims, channels, self.out_channels, 3, padding=1) | |
| else: | |
| self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) | |
| if self.use_temporal_conv: | |
| self.temopral_conv = TemporalConvBlock( | |
| self.out_channels, | |
| self.out_channels, | |
| dropout=0.1, | |
| spatial_aware=tempspatial_aware | |
| ) | |
| def forward(self, x, emb, batch_size=None): | |
| """ | |
| Apply the block to a Tensor, conditioned on a timestep embedding. | |
| :param x: an [N x C x ...] Tensor of features. | |
| :param emb: an [N x emb_channels] Tensor of timestep embeddings. | |
| :return: an [N x C x ...] Tensor of outputs. | |
| """ | |
| input_tuple = (x, emb) | |
| if batch_size: | |
| forward_batchsize = partial(self._forward, batch_size=batch_size) | |
| return checkpoint(forward_batchsize, input_tuple, self.parameters(), self.use_checkpoint) | |
| return checkpoint(self._forward, input_tuple, self.parameters(), self.use_checkpoint) | |
| def _forward(self, x, emb, batch_size=None): | |
| if self.updown: | |
| in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] | |
| h = in_rest(x) | |
| h = self.h_upd(h) | |
| x = self.x_upd(x) | |
| h = in_conv(h) | |
| else: | |
| h = self.in_layers(x) | |
| emb_out = self.emb_layers(emb).type(h.dtype) | |
| while len(emb_out.shape) < len(h.shape): | |
| emb_out = emb_out[..., None] | |
| if self.use_scale_shift_norm: | |
| out_norm, out_rest = self.out_layers[0], self.out_layers[1:] | |
| scale, shift = torch.chunk(emb_out, 2, dim=1) | |
| h = out_norm(h) * (1 + scale) + shift | |
| h = out_rest(h) | |
| else: | |
| h = h + emb_out | |
| h = self.out_layers(h) | |
| h = self.skip_connection(x) + h | |
| if self.use_temporal_conv and batch_size: | |
| h = rearrange(h, '(b t) c h w -> b c t h w', b=batch_size) | |
| h = self.temopral_conv(h) | |
| h = rearrange(h, 'b c t h w -> (b t) c h w') | |
| return h | |
| class TemporalConvBlock(nn.Module): | |
| """ | |
| Adapted from modelscope: https://github.com/modelscope/modelscope/blob/master/modelscope/models/multi_modal/video_synthesis/unet_sd.py | |
| """ | |
| def __init__(self, in_channels, out_channels=None, dropout=0.0, spatial_aware=False): | |
| super(TemporalConvBlock, self).__init__() | |
| if out_channels is None: | |
| out_channels = in_channels | |
| self.in_channels = in_channels | |
| self.out_channels = out_channels | |
| th_kernel_shape = (3, 1, 1) if not spatial_aware else (3, 3, 1) | |
| th_padding_shape = (1, 0, 0) if not spatial_aware else (1, 1, 0) | |
| tw_kernel_shape = (3, 1, 1) if not spatial_aware else (3, 1, 3) | |
| tw_padding_shape = (1, 0, 0) if not spatial_aware else (1, 0, 1) | |
| # conv layers | |
| self.conv1 = nn.Sequential( | |
| nn.GroupNorm(32, in_channels), nn.SiLU(), | |
| nn.Conv3d(in_channels, out_channels, th_kernel_shape, padding=th_padding_shape)) | |
| self.conv2 = nn.Sequential( | |
| nn.GroupNorm(32, out_channels), nn.SiLU(), nn.Dropout(dropout), | |
| nn.Conv3d(out_channels, in_channels, tw_kernel_shape, padding=tw_padding_shape)) | |
| self.conv3 = nn.Sequential( | |
| nn.GroupNorm(32, out_channels), nn.SiLU(), nn.Dropout(dropout), | |
| nn.Conv3d(out_channels, in_channels, th_kernel_shape, padding=th_padding_shape)) | |
| self.conv4 = nn.Sequential( | |
| nn.GroupNorm(32, out_channels), nn.SiLU(), nn.Dropout(dropout), | |
| nn.Conv3d(out_channels, in_channels, tw_kernel_shape, padding=tw_padding_shape)) | |
| # zero out the last layer params,so the conv block is identity | |
| nn.init.zeros_(self.conv4[-1].weight) | |
| nn.init.zeros_(self.conv4[-1].bias) | |
| def forward(self, x): | |
| identity = x | |
| x = self.conv1(x) | |
| x = self.conv2(x) | |
| x = self.conv3(x) | |
| x = self.conv4(x) | |
| return identity + x | |
| class UNet3DModel(nn.Module, PyTorchModelHubMixin): | |
| """ | |
| The full UNet model with attention and timestep embedding. | |
| :param in_channels: in_channels in the input Tensor. | |
| :param model_channels: base channel count for the model. | |
| :param out_channels: channels in the output Tensor. | |
| :param num_res_blocks: number of residual blocks per downsample. | |
| :param attention_resolutions: a collection of downsample rates at which | |
| attention will take place. May be a set, list, or tuple. | |
| For example, if this contains 4, then at 4x downsampling, attention | |
| will be used. | |
| :param dropout: the dropout probability. | |
| :param channel_mult: channel multiplier for each level of the UNet. | |
| :param conv_resample: if True, use learned convolutions for upsampling and | |
| downsampling. | |
| :param dims: determines if the signal is 1D, 2D, or 3D. | |
| :param num_classes: if specified (as an int), then this model will be | |
| class-conditional with `num_classes` classes. | |
| :param use_checkpoint: use gradient checkpointing to reduce memory usage. | |
| :param num_heads: the number of attention heads in each attention layer. | |
| :param num_heads_channels: if specified, ignore num_heads and instead use | |
| a fixed channel width per attention head. | |
| :param num_heads_upsample: works with num_heads to set a different number | |
| of heads for upsampling. Deprecated. | |
| :param use_scale_shift_norm: use a FiLM-like conditioning mechanism. | |
| :param resblock_updown: use residual blocks for up/downsampling. | |
| :param use_new_attention_order: use a different attention pattern for potentially | |
| increased efficiency. | |
| """ | |
| def __init__(self, | |
| in_channels, | |
| model_channels, | |
| out_channels, | |
| num_res_blocks, | |
| attention_resolutions, | |
| dropout=0.0, | |
| channel_mult=(1, 2, 4, 8), | |
| conv_resample=True, | |
| dims=2, | |
| context_dim=None, | |
| use_scale_shift_norm=False, | |
| resblock_updown=False, | |
| num_heads=-1, | |
| num_head_channels=-1, | |
| transformer_depth=1, | |
| use_linear=False, | |
| temporal_conv=False, | |
| tempspatial_aware=False, | |
| temporal_attention=True, | |
| use_relative_position=True, | |
| use_causal_attention=False, | |
| temporal_length=None, | |
| addition_attention=False, | |
| temporal_selfatt_only=True, | |
| image_cross_attention=False, | |
| image_cross_attention_scale_learnable=False, | |
| default_fs=4, | |
| fs_condition=False, | |
| ): | |
| super(UNet3DModel, self).__init__() | |
| if num_heads == -1: | |
| assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' | |
| if num_head_channels == -1: | |
| assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' | |
| self.in_channels = in_channels | |
| self.model_channels = model_channels | |
| self.out_channels = out_channels | |
| self.num_res_blocks = num_res_blocks | |
| self.attention_resolutions = attention_resolutions | |
| self.dropout = dropout | |
| self.channel_mult = channel_mult | |
| self.conv_resample = conv_resample | |
| self.temporal_attention = temporal_attention | |
| time_embed_dim = model_channels * 4 | |
| self.use_checkpoint = use_checkpoint = False # moved to self.enable_gradient_checkpointing() | |
| temporal_self_att_only = True | |
| self.addition_attention = addition_attention | |
| self.temporal_length = temporal_length | |
| self.image_cross_attention = image_cross_attention | |
| self.image_cross_attention_scale_learnable = image_cross_attention_scale_learnable | |
| self.default_fs = default_fs | |
| self.fs_condition = fs_condition | |
| ## Time embedding blocks | |
| self.time_embed = nn.Sequential( | |
| linear(model_channels, time_embed_dim), | |
| nn.SiLU(), | |
| linear(time_embed_dim, time_embed_dim), | |
| ) | |
| if fs_condition: | |
| self.fps_embedding = nn.Sequential( | |
| linear(model_channels, time_embed_dim), | |
| nn.SiLU(), | |
| linear(time_embed_dim, time_embed_dim), | |
| ) | |
| nn.init.zeros_(self.fps_embedding[-1].weight) | |
| nn.init.zeros_(self.fps_embedding[-1].bias) | |
| ## Input Block | |
| self.input_blocks = nn.ModuleList( | |
| [ | |
| TimestepEmbedSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1)) | |
| ] | |
| ) | |
| if self.addition_attention: | |
| self.init_attn = TimestepEmbedSequential( | |
| TemporalTransformer( | |
| model_channels, | |
| n_heads=8, | |
| d_head=num_head_channels, | |
| depth=transformer_depth, | |
| context_dim=context_dim, | |
| use_checkpoint=use_checkpoint, only_self_att=temporal_selfatt_only, | |
| causal_attention=False, relative_position=use_relative_position, | |
| temporal_length=temporal_length)) | |
| input_block_chans = [model_channels] | |
| ch = model_channels | |
| ds = 1 | |
| for level, mult in enumerate(channel_mult): | |
| for _ in range(num_res_blocks): | |
| layers = [ | |
| ResBlock(ch, time_embed_dim, dropout, | |
| out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint, | |
| use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware, | |
| use_temporal_conv=temporal_conv | |
| ) | |
| ] | |
| ch = mult * model_channels | |
| if ds in attention_resolutions: | |
| if num_head_channels == -1: | |
| dim_head = ch // num_heads | |
| else: | |
| num_heads = ch // num_head_channels | |
| dim_head = num_head_channels | |
| layers.append( | |
| SpatialTransformer(ch, num_heads, dim_head, | |
| depth=transformer_depth, context_dim=context_dim, use_linear=use_linear, | |
| use_checkpoint=use_checkpoint, disable_self_attn=False, | |
| video_length=temporal_length, | |
| image_cross_attention=self.image_cross_attention, | |
| image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable, | |
| ) | |
| ) | |
| if self.temporal_attention: | |
| layers.append( | |
| TemporalTransformer(ch, num_heads, dim_head, | |
| depth=transformer_depth, context_dim=context_dim, use_linear=use_linear, | |
| use_checkpoint=use_checkpoint, only_self_att=temporal_self_att_only, | |
| causal_attention=use_causal_attention, | |
| relative_position=use_relative_position, | |
| temporal_length=temporal_length | |
| ) | |
| ) | |
| self.input_blocks.append(TimestepEmbedSequential(*layers)) | |
| input_block_chans.append(ch) | |
| if level != len(channel_mult) - 1: | |
| out_ch = ch | |
| self.input_blocks.append( | |
| TimestepEmbedSequential( | |
| ResBlock(ch, time_embed_dim, dropout, | |
| out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint, | |
| use_scale_shift_norm=use_scale_shift_norm, | |
| down=True | |
| ) | |
| if resblock_updown | |
| else Downsample(ch, conv_resample, dims=dims, out_channels=out_ch) | |
| ) | |
| ) | |
| ch = out_ch | |
| input_block_chans.append(ch) | |
| ds *= 2 | |
| if num_head_channels == -1: | |
| dim_head = ch // num_heads | |
| else: | |
| num_heads = ch // num_head_channels | |
| dim_head = num_head_channels | |
| layers = [ | |
| ResBlock(ch, time_embed_dim, dropout, | |
| dims=dims, use_checkpoint=use_checkpoint, | |
| use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware, | |
| use_temporal_conv=temporal_conv | |
| ), | |
| SpatialTransformer(ch, num_heads, dim_head, | |
| depth=transformer_depth, context_dim=context_dim, use_linear=use_linear, | |
| use_checkpoint=use_checkpoint, disable_self_attn=False, video_length=temporal_length, | |
| image_cross_attention=self.image_cross_attention, | |
| image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable | |
| ) | |
| ] | |
| if self.temporal_attention: | |
| layers.append( | |
| TemporalTransformer(ch, num_heads, dim_head, | |
| depth=transformer_depth, context_dim=context_dim, use_linear=use_linear, | |
| use_checkpoint=use_checkpoint, only_self_att=temporal_self_att_only, | |
| causal_attention=use_causal_attention, relative_position=use_relative_position, | |
| temporal_length=temporal_length | |
| ) | |
| ) | |
| layers.append( | |
| ResBlock(ch, time_embed_dim, dropout, | |
| dims=dims, use_checkpoint=use_checkpoint, | |
| use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware, | |
| use_temporal_conv=temporal_conv | |
| ) | |
| ) | |
| ## Middle Block | |
| self.middle_block = TimestepEmbedSequential(*layers) | |
| ## Output Block | |
| self.output_blocks = nn.ModuleList([]) | |
| for level, mult in list(enumerate(channel_mult))[::-1]: | |
| for i in range(num_res_blocks + 1): | |
| ich = input_block_chans.pop() | |
| layers = [ | |
| ResBlock(ch + ich, time_embed_dim, dropout, | |
| out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint, | |
| use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware, | |
| use_temporal_conv=temporal_conv | |
| ) | |
| ] | |
| ch = model_channels * mult | |
| if ds in attention_resolutions: | |
| if num_head_channels == -1: | |
| dim_head = ch // num_heads | |
| else: | |
| num_heads = ch // num_head_channels | |
| dim_head = num_head_channels | |
| layers.append( | |
| SpatialTransformer(ch, num_heads, dim_head, | |
| depth=transformer_depth, context_dim=context_dim, use_linear=use_linear, | |
| use_checkpoint=use_checkpoint, disable_self_attn=False, | |
| video_length=temporal_length, | |
| image_cross_attention=self.image_cross_attention, | |
| image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable | |
| ) | |
| ) | |
| if self.temporal_attention: | |
| layers.append( | |
| TemporalTransformer(ch, num_heads, dim_head, | |
| depth=transformer_depth, context_dim=context_dim, use_linear=use_linear, | |
| use_checkpoint=use_checkpoint, only_self_att=temporal_self_att_only, | |
| causal_attention=use_causal_attention, | |
| relative_position=use_relative_position, | |
| temporal_length=temporal_length | |
| ) | |
| ) | |
| if level and i == num_res_blocks: | |
| out_ch = ch | |
| layers.append( | |
| ResBlock(ch, time_embed_dim, dropout, | |
| out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint, | |
| use_scale_shift_norm=use_scale_shift_norm, | |
| up=True | |
| ) | |
| if resblock_updown | |
| else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch) | |
| ) | |
| ds //= 2 | |
| self.output_blocks.append(TimestepEmbedSequential(*layers)) | |
| self.out = nn.Sequential( | |
| normalization(ch), | |
| nn.SiLU(), | |
| zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)), | |
| ) | |
| def device(self): | |
| return next(self.parameters()).device | |
| def dtype(self): | |
| return next(self.parameters()).dtype | |
| def forward(self, x, timesteps, context_text=None, context_img=None, concat_cond=None, fs=None, **kwargs): | |
| b, _, t, _, _ = x.shape | |
| t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).type(x.dtype) | |
| emb = self.time_embed(t_emb) | |
| context_text = context_text.repeat_interleave(repeats=t, dim=0) | |
| context_img = rearrange(context_img, 'b t l c -> (b t) l c') | |
| context = (context_text, context_img) | |
| emb = emb.repeat_interleave(repeats=t, dim=0) | |
| if concat_cond is not None: | |
| x = torch.cat([x, concat_cond], dim=1) | |
| ## always in shape (b t) c h w, except for temporal layer | |
| x = rearrange(x, 'b c t h w -> (b t) c h w') | |
| ## combine emb | |
| if self.fs_condition: | |
| if fs is None: | |
| fs = torch.tensor( | |
| [self.default_fs] * b, dtype=torch.long, device=x.device) | |
| fs_emb = timestep_embedding(fs, self.model_channels, repeat_only=False).type(x.dtype) | |
| fs_embed = self.fps_embedding(fs_emb) | |
| fs_embed = fs_embed.repeat_interleave(repeats=t, dim=0) | |
| emb = emb + fs_embed | |
| h = x | |
| hs = [] | |
| for id, module in enumerate(self.input_blocks): | |
| h = module(h, emb, context=context, batch_size=b) | |
| if id == 0 and self.addition_attention: | |
| h = self.init_attn(h, emb, context=context, batch_size=b) | |
| hs.append(h) | |
| h = self.middle_block(h, emb, context=context, batch_size=b) | |
| for module in self.output_blocks: | |
| h = torch.cat([h, hs.pop()], dim=1) | |
| h = module(h, emb, context=context, batch_size=b) | |
| h = h.type(x.dtype) | |
| y = self.out(h) | |
| y = rearrange(y, '(b t) c h w -> b c t h w', b=b) | |
| return y | |
| def enable_gradient_checkpointing(self, enable=True, verbose=False): | |
| for k, v in self.named_modules(): | |
| if hasattr(v, 'checkpoint'): | |
| v.checkpoint = enable | |
| if verbose: | |
| print(f'{k}.checkpoint = {enable}') | |
| if hasattr(v, 'use_checkpoint'): | |
| v.use_checkpoint = enable | |
| if verbose: | |
| print(f'{k}.use_checkpoint = {enable}') | |
| return | |