File size: 1,892 Bytes
5482396 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
import streamlit as st
from transformers import pipeline
from PIL import Image
# Load Hugging Face models
@st.cache_resource
def load_image_classifier():
return pipeline("image-classification", model="google/vit-base-patch16-224")
@st.cache_resource
def load_text_classifier():
return pipeline("sentiment-analysis") # Default model for sentiment analysis
# Initialize models
image_classifier = load_image_classifier()
text_classifier = load_text_classifier()
# App title and navigation
st.title("Hugging Face Classification App")
st.sidebar.title("Choose Task")
task = st.sidebar.selectbox("Select a task", ["Image Classification", "Text Classification"])
if task == "Image Classification":
st.header("Image Classification")
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
# Display uploaded image
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_column_width=True)
# Classify the image
if st.button("Classify Image"):
with st.spinner("Classifying..."):
results = image_classifier(image)
st.subheader("Classification Results")
for result in results:
st.write(f"**{result['label']}**: {result['score']:.2f}")
elif task == "Text Classification":
st.header("Text Classification")
text_input = st.text_area("Enter text for classification", "Streamlit is an amazing tool!")
# Classify the text
if st.button("Classify Text"):
with st.spinner("Classifying..."):
results = text_classifier(text_input)
st.subheader("Classification Results")
for result in results:
st.write(f"**{result['label']}**: {result['score']:.2f}")
st.write("Powered by Streamlit and Hugging Face 🤗")
|