File size: 4,257 Bytes
53c0cc8
 
 
 
 
 
 
 
 
6641fa8
53c0cc8
 
 
49600c8
53c0cc8
6d106b8
 
 
 
 
 
 
 
 
 
a12858e
53c0cc8
 
6641fa8
53c0cc8
6641fa8
 
 
 
 
 
 
 
 
 
 
 
 
 
53c0cc8
c410e03
53c0cc8
49600c8
6641fa8
53c0cc8
 
49600c8
6641fa8
49600c8
 
 
c410e03
ceffe7d
 
49600c8
ceffe7d
 
 
53c0cc8
 
49600c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53c0cc8
49600c8
 
53c0cc8
49600c8
53c0cc8
 
3e9c92c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
from __future__ import annotations

import json
import shutil
import subprocess
import tempfile
from datetime import datetime, timedelta
from functools import lru_cache
from pathlib import Path
from huggingface_hub import hf_hub_download

import gradio as gr

from modular_graph_and_candidates import build_graph_json, generate_html, build_timeline_json, generate_timeline_html

def _escape_srcdoc(text: str) -> str:
    """Escape for inclusion inside an <iframe srcdoc="…"> attribute."""
    return (
        text.replace("&", "&amp;")
            .replace("\"", "&quot;")
            .replace("'", "&#x27;")
            .replace("<", "&lt;")
            .replace(">", "&gt;")
    )


HF_MAIN_REPO = "https://github.com/huggingface/transformers"

CACHE_REPO = "Molbap/hf_cached_embeds_log"

def _fetch_from_cache_repo(kind: str, sim_method: str, threshold: float, multimodal: bool):
    repo_id = CACHE_REPO
    latest_fp = hf_hub_download(repo_id=repo_id, filename="latest.json", repo_type="dataset")
    info = json.loads(Path(latest_fp).read_text(encoding="utf-8"))
    sha = info.get("sha")
    key = f"{sha}/{sim_method}-{threshold:.2f}-m{int(multimodal)}"
    html_fp = hf_hub_download(repo_id=repo_id, filename=f"{kind}/{key}.html", repo_type="dataset")
    json_fp = hf_hub_download(repo_id=repo_id, filename=f"{kind}/{key}.json", repo_type="dataset")
    raw_html = Path(html_fp).read_text(encoding="utf-8")
    json_text = Path(json_fp).read_text(encoding="utf-8")
    iframe_html = f'<iframe style="width:100%;height:85vh;border:none;" srcdoc="{_escape_srcdoc(raw_html)}"></iframe>'
    tmp = Path(tempfile.mkstemp(suffix=("_timeline.json" if kind == "timeline" else ".json"))[1])
    tmp.write_text(json_text, encoding="utf-8")
    return iframe_html, str(tmp)



def run_graph(repo_url: str, threshold: float, multimodal: bool, sim_method: str):
    return _fetch_from_cache_repo("graph", sim_method, threshold, multimodal)


def run_timeline(repo_url: str, threshold: float, multimodal: bool, sim_method: str):
    return _fetch_from_cache_repo("timeline", sim_method, threshold, multimodal)



# ───────────────────────────── UI ────────────────────────────────────────────────

CUSTOM_CSS = """
#graph_html iframe, #timeline_html iframe {height:85vh !important; width:100% !important; border:none;}
"""

with gr.Blocks(css=CUSTOM_CSS) as demo:
    gr.Markdown("## πŸ” Modular‑candidate explorer for πŸ€— Transformers")

    with gr.Tabs():
        with gr.Tab("Dependency Graph"):
            with gr.Row():
                repo_in   = gr.Text(value=HF_MAIN_REPO, label="Repo / fork URL")
                thresh    = gr.Slider(0.50, 0.95, value=0.5, step=0.01, label="Similarity β‰₯")
                multi_cb  = gr.Checkbox(label="Only multimodal models")
                sim_radio = gr.Radio(["jaccard", "embedding"], value="jaccard", label="Similarity metric")
                go_btn    = gr.Button("Build graph")

            graph_html_out  = gr.HTML(elem_id="graph_html", show_label=False)
            graph_json_out  = gr.File(label="Download graph.json")

            go_btn.click(run_graph, [repo_in, thresh, multi_cb, sim_radio], [graph_html_out, graph_json_out])

        with gr.Tab("Chronological Timeline"):
            with gr.Row():
                timeline_repo_in = gr.Text(value=HF_MAIN_REPO, label="Repo / fork URL")
                timeline_thresh = gr.Slider(0.50, 0.95, value=0.5, step=0.01, label="Similarity β‰₯")
                timeline_multi_cb = gr.Checkbox(label="Only multimodal models")
                timeline_sim_radio = gr.Radio(["jaccard", "embedding"], value="jaccard", label="Similarity metric")
                timeline_btn = gr.Button("Build timeline")

            timeline_html_out = gr.HTML(elem_id="timeline_html", show_label=False)
            timeline_json_out = gr.File(label="Download timeline.json")

            timeline_btn.click(run_timeline, [timeline_repo_in, timeline_thresh, timeline_multi_cb, timeline_sim_radio], [timeline_html_out, timeline_json_out])

if __name__ == "__main__":
    demo.launch(allowed_paths=["static"])