File size: 5,727 Bytes
fcaa164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
from abc import ABC, abstractmethod
from typing import Any, Dict, List, Optional, Union

from openai import Stream

from camel.messages import OpenAIMessage
from camel.types import (
    ChatCompletion,
    ChatCompletionChunk,
    ModelType,
    ParsedChatCompletion,
    UnifiedModelType,
)
from camel.utils import BaseTokenCounter


class BaseModelBackend(ABC):
    r"""Base class for different model backends.
    It may be OpenAI API, a local LLM, a stub for unit tests, etc.

    Args:
        model_type (Union[ModelType, str]): Model for which a backend is
            created.
        model_config_dict (Optional[Dict[str, Any]], optional): A config
            dictionary. (default: :obj:`{}`)
        api_key (Optional[str], optional): The API key for authenticating
            with the model service. (default: :obj:`None`)
        url (Optional[str], optional): The url to the model service.
            (default: :obj:`None`)
        token_counter (Optional[BaseTokenCounter], optional): Token
            counter to use for the model. If not provided,
            :obj:`OpenAITokenCounter` will be used. (default: :obj:`None`)
    """

    def __init__(
        self,
        model_type: Union[ModelType, str],
        model_config_dict: Optional[Dict[str, Any]] = None,
        api_key: Optional[str] = None,
        url: Optional[str] = None,
        token_counter: Optional[BaseTokenCounter] = None,
    ) -> None:
        self.model_type: UnifiedModelType = UnifiedModelType(model_type)
        if model_config_dict is None:
            model_config_dict = {}
        self.model_config_dict = model_config_dict
        self._api_key = api_key
        self._url = url
        self._token_counter = token_counter
        self.check_model_config()

    @property
    @abstractmethod
    def token_counter(self) -> BaseTokenCounter:
        r"""Initialize the token counter for the model backend.

        Returns:
            BaseTokenCounter: The token counter following the model's
                tokenization style.
        """
        pass

    @abstractmethod
    def run(
        self,
        messages: List[OpenAIMessage],
    ) -> Union[ChatCompletion, Stream[ChatCompletionChunk]]:
        r"""Runs the query to the backend model.

        Args:
            messages (List[OpenAIMessage]): Message list with the chat history
                in OpenAI API format.

        Returns:
            Union[ChatCompletion, Stream[ChatCompletionChunk]]:
                `ChatCompletion` in the non-stream mode, or
                `Stream[ChatCompletionChunk]` in the stream mode.
        """
        pass

    @abstractmethod
    def check_model_config(self):
        r"""Check whether the input model configuration contains unexpected
        arguments

        Raises:
            ValueError: If the model configuration dictionary contains any
                unexpected argument for this model class.
        """
        pass

    def count_tokens_from_messages(self, messages: List[OpenAIMessage]) -> int:
        r"""Count the number of tokens in the messages using the specific
        tokenizer.

        Args:
            messages (List[Dict]): message list with the chat history
                in OpenAI API format.

        Returns:
            int: Number of tokens in the messages.
        """
        return self.token_counter.count_tokens_from_messages(messages)

    def _to_chat_completion(
        self, response: ParsedChatCompletion
    ) -> ChatCompletion:
        if len(response.choices) > 1:
            print("Warning: Multiple response choices detected")

        choice = dict(
            index=response.choices[0].index,
            message={
                "role": response.choices[0].message.role,
                "content": response.choices[0].message.content,
                "tool_calls": response.choices[0].message.tool_calls,
                "parsed": response.choices[0].message.parsed,
            },
            finish_reason=response.choices[0].finish_reason,
        )

        obj = ChatCompletion.construct(
            id=response.id,
            choices=[choice],
            created=response.created,
            model=response.model,
            object="chat.completion",
            usage=response.usage,
        )
        return obj

    @property
    def token_limit(self) -> int:
        r"""Returns the maximum token limit for a given model.

        This method retrieves the maximum token limit either from the
        `model_config_dict` or from the model's default token limit.

        Returns:
            int: The maximum token limit for the given model.
        """
        return (
            self.model_config_dict.get("max_tokens")
            or self.model_type.token_limit
        )

    @property
    def stream(self) -> bool:
        r"""Returns whether the model is in stream mode, which sends partial
        results each time.

        Returns:
            bool: Whether the model is in stream mode.
        """
        return False