File size: 16,774 Bytes
fcaa164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========

import json
import logging
import os
import random
import re
import string
import uuid
from pathlib import Path
from typing import Any, Dict, List, Literal, Optional, Protocol, Union

from tqdm import tqdm

from camel.agents import ChatAgent
from camel.benchmarks.base import BaseBenchmark
from camel.messages import BaseMessage
from camel.retrievers.auto_retriever import AutoRetriever

logger = logging.getLogger(__name__)


class RetrieverProtocol(Protocol):
    r"""Protocol for the retriever class. Any retriever class implementing
    this protocol can be used in the benchmark class.
    """

    def retrieve(
        self, query: str, contents: List[str], **kwargs: Dict[str, Any]
    ) -> Dict[str, Any]:
        r"""Retrieve the relevant content for the query.

        Args:
            query (str): The query to retrieve the content for.
            contents (List[str]): The list of contents to search in.
            **kwargs (Dict[str, Any]): Additional keyword arguments.

        Returns:
            Dict[str, Any]: The relevant content for the query.
        """
        ...

    def reset(self, **kwargs) -> bool:
        r"""Reset the retriever.
        Some benchmarks may require resetting the retriever
        after each query.

        Args:
            **kwargs: Additional keyword arguments.

        Returns:
            bool: True if the reset was successful, False otherwise.
        """
        ...


class DefaultGAIARetriever(AutoRetriever):
    r"""Default retriever for the GAIA benchmark.
    This retriever uses AutoRetriever in camel to retrieve the content based on
    the query.
    """

    def retrieve(
        self, query: str, contents: List[str], **kwargs: Any
    ) -> Dict[str, Any]:
        r"""Retrieve the content based on the query.

        Args:
            query (str): The query to search for.
            contents (List[str]): The list of contents to search from.
            **kwargs (Any): The keyword arguments to pass to the
                retriever.

        Returns:
            Dict[str, Any]: The retrieved content.
        """
        return self.run_vector_retriever(query, contents, **kwargs)  # type: ignore[arg-type]

    def reset(self, **kwargs: Any) -> bool:
        r"""Reset the retriever.

        Args:
            **kwargs (Any): The keyword arguments to pass to the
                retriever.

        Returns:
            bool: Whether the reset was successful.
        """
        path = Path(self.vector_storage_local_path or os.getcwd())
        task_id = str(kwargs.get("task_id", uuid.uuid4()))
        retriever_dir = path / task_id
        if not retriever_dir.exists():
            try:
                retriever_dir.mkdir(parents=True)
            except Exception as e:
                logger.error(
                    "Error in creating directory: " + f"{retriever_dir}: {e!s}"
                )
                return False
        self.vector_storage_local_path = str(retriever_dir)
        return True


class GAIABenchmark(BaseBenchmark):
    r"""GAIA Benchmark adapted from `"GAIA: a benchmark for General AI
    Assistants"
    <https://huggingface.co/datasets/gaia-benchmark/GAIA>`_.

    Args:
        data_dir (str): The directory to save the data.
        save_to (str): The file to save the results.
        retriever (Optional[RetrieverProtocol]): The retriever to use.
            (default: :obj:`None`)
        processes (int, optional): The number of processes to use.
            (default: :obj:`1`)
    """

    def __init__(
        self,
        data_dir: str,
        save_to: str,
        retriever: Optional[RetrieverProtocol] = None,
        processes: int = 1,
    ):
        r"""Initialize the GAIA benchmark.

        Args:
            data_dir (str): The directory to save the data.
            save_to (str): The file to save the results.
            retriever (Optional[RetrieverProtocol], optional): The retriever to
                use. (default: :obj:`None`)
            processes (int, optional): The number of processes to use for
                parallel processing. (default: :obj:`1`)
        """
        super().__init__("gaia", data_dir, save_to, processes)
        self.retriever = retriever or DefaultGAIARetriever()

    def download(self):
        r"""Download the GAIA dataset."""
        from huggingface_hub import snapshot_download

        snapshot_download(
            repo_id="gaia-benchmark/GAIA",
            repo_type="dataset",
            local_dir=self.data_dir,
            local_dir_use_symlinks=True,
        )

    def load(self, force_download=False):
        r"""Load the GAIA dataset.

        Args:
            force_download (bool, optional): Whether to
                force download the data.
        """
        if force_download:
            logger.info("Force downloading data.")
            self.download()

        # Define validation and test directories
        valid_dir = self.data_dir / "2023/validation"
        test_dir = self.data_dir / "2023/test"

        # Check if directories exist; if not, download the data
        if not valid_dir.is_dir() or not test_dir.is_dir():
            logger.info("Data not found. Downloading data.")
            self.download()

        # Load metadata for both validation and test datasets
        for path, label in zip([valid_dir, test_dir], ["valid", "test"]):
            self._data[label] = []
            with open(path / "metadata.jsonl", "r") as f:
                lines = f.readlines()
                for line in lines:
                    data = json.loads(line)
                    if data["task_id"] == "0-0-0-0-0":
                        continue
                    if data["file_name"]:
                        data["file_name"] = path / data["file_name"]
                    self._data[label].append(data)
        return self

    @property
    def train(self):
        r"""Get the training set."""
        raise NotImplementedError("GAIA does not have a training set.")

    def run(  # type: ignore[override]
        self,
        agent: ChatAgent,
        on: Literal["train", "valid", "test"],
        level: Union[int, List[int], Literal["all"]],
        randomize: bool = False,
        subset: Optional[int] = None,
    ) -> Dict[str, Any]:
        r"""Run the benchmark.

        Args:
            agent (ChatAgent): The agent to run the benchmark.
            on (Literal["valid", "test"]): The set to run the benchmark.
            level (Union[int, List[int], Literal["all"]]): The level to run
                the benchmark.
            randomize (bool, optional): Whether to randomize the data.
                (default: :obj:`False`)
            subset (Optional[int], optional): The subset of data to run.
                (default: :obj:`None`)

        Returns:
            Dict[str, Any]: The results of the benchmark.
        """
        # Validate inputs
        if on not in ["valid", "test"]:
            raise ValueError(
                f"Invalid value for `on`: {on}, expected 'valid' or 'test'."
            )

        levels = (
            [1, 2, 3]
            if level == "all"
            else [level]
            if isinstance(level, int)
            else level
        )
        if not all(
            isinstance(level, int) and level in [1, 2, 3] for level in levels
        ):
            raise ValueError(
                f"Invalid value for `level`: {level}, expected 1, 2, 3 "
                "or 'all'."
            )

        logger.info(f"Running benchmark on {on} set at levels {levels}.")
        datas = [data for data in self._data[on] if data["Level"] in levels]

        # Shuffle and subset data if necessary
        if randomize:
            random.shuffle(datas)
        if subset:
            datas = datas[:subset]

        logger.info(f"Number of tasks: {len(datas)}")

        # Initialize results storage
        self._results = []

        # Process tasks
        with open(self.save_to, "w") as f:
            for task in tqdm(datas, desc="Running"):
                if not self._prepare_task(task):
                    continue

                try:
                    result = agent.step(self._create_user_message(task))
                    self._process_result(agent, task, result, f)
                except Exception as e:
                    self._handle_error(task, e, f)
                finally:
                    agent.reset()

        return self._generate_summary()

    def _prepare_task(self, task: Dict[str, Any]) -> bool:
        r"""Prepare the task by validating and enriching its data."""
        if task["file_name"]:
            file_path = Path(task["file_name"])
            if not file_path.exists():
                logger.info(
                    f"Skipping task because file not found: {file_path}"
                )
                return False
            if file_path.suffix in [".pdf", ".docx", ".doc", ".txt"]:
                if not self.retriever.reset(task_id=task["task_id"]):
                    return False
                retrieved_info = self.retriever.retrieve(
                    query=task["Question"], contents=[task["file_name"]]
                )
                retrieved_content = [
                    item["text"]
                    for item in retrieved_info.get("Retrieved Context", [])
                ]
                if retrieved_content:
                    task["Question"] += "\n" + "\n".join(retrieved_content)
            else:
                logger.info(
                    f"Skipping task due to unsupported file "
                    f"format: {file_path.suffix}"
                )
                return False
        return True

    def _create_user_message(self, task: Dict[str, Any]) -> BaseMessage:
        r"""Create a user message from a task."""
        return BaseMessage.make_user_message(
            role_name="User",
            content=task["Question"],
        )

    def _process_result(
        self,
        agent: ChatAgent,
        task: Dict[str, Any],
        result: Any,
        file_obj: Any,
    ) -> None:
        r"""Process and store the result of a task."""
        model_answer = self.get_final_answer(result.msgs[0].content)
        final_answer = task["Final answer"]
        score = self.question_scorer(model_answer, final_answer)
        tool_calls = result.info.get("tool_calls", [])

        result_data = {
            "task_id": task["task_id"],
            "question": task["Question"],
            "level": task["Level"],
            "model_answer": model_answer,
            "ground_truth": final_answer,
            "tool_calls": [tool.model_dump() for tool in tool_calls],
            "error": None,
            "score": int(score),
            "history": agent.memory.get_context(),
        }
        self._results.append(result_data)
        file_obj.write(json.dumps(result_data, indent=2) + "\n")
        file_obj.flush()

    def _handle_error(
        self, task: Dict[str, Any], error: Exception, file_obj: Any
    ) -> None:
        r"""Handle errors encountered during task processing."""
        logger.warning(f"Error processing task {task['task_id']}: {error}")
        error_data = {
            "task_id": task["task_id"],
            "question": task["Question"],
            "level": task["Level"],
            "model_answer": "ERROR",
            "ground_truth": task["Final answer"],
            "tool_calls": [],
            "error": str(error),
            "score": 0,
        }
        self._results.append(error_data)
        file_obj.write(json.dumps(error_data, indent=2) + "\n")
        file_obj.flush()

    def _generate_summary(self) -> Dict[str, Any]:
        r"""Generate and return a summary of the benchmark results."""
        return {
            "total": len(self._results),
            "correct": sum(result["score"] for result in self._results),
            "results": self._results,
        }

    def question_scorer(self, model_answer: str, ground_truth: str) -> bool:
        r"""Scorer for the GAIA benchmark.
        https://huggingface.co/spaces/gaia-benchmark/leaderboard/blob/main/
        scorer.py

        Args:
            model_answer (str): The model answer.
            ground_truth (str): The ground truth answer.

        Returns:
            bool: The score of the model
        """

        def is_float(element: Any) -> bool:
            try:
                float(element)
                return True
            except ValueError:
                return False

        if is_float(ground_truth):
            logger.info(f"Evaluating {model_answer} as a number.")
            normalized_answer = self.normalize_number_str(model_answer)
            return normalized_answer == float(ground_truth)

        elif any(char in ground_truth for char in [",", ";"]):
            logger.info(
                f"Evaluating {model_answer} as a comma separated list."
            )
            gt_elems = self.split_string(ground_truth)
            ma_elems = self.split_string(model_answer)

            if len(gt_elems) != len(ma_elems):
                logger.warning(
                    "Answer lists have different lengths, returning False.",
                    UserWarning,
                )
                return False

            comparisons = []
            for ma_elem, gt_elem in zip(ma_elems, gt_elems):
                if is_float(gt_elem):
                    normalized_ma_elem = self.normalize_number_str(ma_elem)
                    comparisons.append(normalized_ma_elem == float(gt_elem))
                else:
                    ma_elem = self.normalize_str(ma_elem, remove_punct=False)
                    gt_elem = self.normalize_str(gt_elem, remove_punct=False)
                    comparisons.append(ma_elem == gt_elem)
            return all(comparisons)
        else:
            logger.info(f"Evaluating {model_answer} as a string.")
            ma_elem = self.normalize_str(model_answer)
            gt_elem = self.normalize_str(ground_truth)
            return ma_elem == gt_elem

    def normalize_number_str(self, number_str: str) -> float:
        for char in ["$", "%", ","]:
            number_str = number_str.replace(char, "")
        try:
            return float(number_str)
        except ValueError:
            logger.error(
                f"String {number_str} cannot be normalized to number str."
            )
            return float("inf")

    def split_string(
        self, s: str, char_list: Optional[List[str]] = None
    ) -> list[str]:
        r"""Split a string based on a list of characters.

        Args:
            s (str): The string to split.
            char_list (Optional[List[str]], optional): T
                he list of characters to split on.
                (default: :obj:`None`)
        """
        if char_list is None:
            char_list = [",", ";"]
        pattern = f"[{''.join(char_list)}]"
        return re.split(pattern, s)

    def normalize_str(self, input_str, remove_punct=True) -> str:
        r"""Normalize a string.

        Args:
            input_str: The input string to normalize.
            remove_punct: Whether to remove punctuation.

        Returns:
            str: The normalized string.
        """
        no_spaces = re.sub(r"\s", "", input_str)
        if remove_punct:
            translator = str.maketrans("", "", string.punctuation)
            return no_spaces.lower().translate(translator)
        else:
            return no_spaces.lower()

    def get_final_answer(self, content: str) -> str:
        r"""Get the final answer from the content.

        Args:
            content (str): The content to extract the final answer from.

        Returns:
            str: The final answer.
        """
        final_answer_index = content.find("FINAL ANSWER")
        if final_answer_index == -1:
            return "FINAL ANSWER not found"
        start_index = final_answer_index + len("FINAL ANSWER: ")
        final_answer_content = content[start_index:].strip()
        return final_answer_content