Mqleet's picture
[update] templates
a3d3755
raw
history blame
27.5 kB
<!DOCTYPE HTML>
<!--
Strongly Typed by HTML5 UP
html5up.net | @ajlkn
Free for personal and commercial use under the CCA 3.0 license (html5up.net/license)
Nerfi CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0/)
Modified by: Mohamad Hakam Shams Eddin CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0/)
-->
<html xmlns="http://www.w3.org/1999/html">
<head>
<title>IDE</title>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1, user-scalable=no" />
<link rel="stylesheet" href="IDE/assets/css/main.css" />
<link rel="stylesheet" href="IDE/assets/css/academicons.min.css" />
<link rel="stylesheet" href="IDE/assets/css/bulma-carousel.min.css">
</head>
<body class="no-sidebar is-preload">
<div id="page-wrapper">
<!-- Header -->
<section id="header">
<!-- style="background: url(assets/images/paper_video.png);
display: -moz-flex;
display: -webkit-flex;
display: -ms-flex;
display: flex;
background-attachment: fixed;
background-position: center;
background-repeat: no-repeat;
background-size: cover;
border-bottom: 0 !important;
cursor: default;" -->
>
<div class="container">
<!-- Logo -->
<h1 id="logo"><a><img src="IDE/assets/images/neurips-navbar-logo.svg" width="80" height="80"/></a><a href="IDE.html"> Identifying Spatio-Temporal Drivers of Extreme Events</a></h1>
<p>
<a href="https://hakamshams.github.io/">Mohamad Hakam Shams Eddin</a><sup>1,2</sup> and
<a href="http://pages.iai.uni-bonn.de/gall_juergen/">Juergen Gall</a><sup>1,2</sup>
<br>
<br>
<sup>1</sup>Institute of Computer Science, University of Bonn, Germany
<br>
<sup>2</sup>Lamarr Institute for Machine Learning and Artificial Intelligence, Germany
</p>
<!-- Nav -->
<nav id="nav">
<ul>
<li><a class="icon1 ai ai-open-access" href="https://openreview.net/forum?id=DdKdr4kqxh"><span>Paper</span></a></li>
<li><a class="icon1 ai ai-arxiv" href="https://arxiv.org/abs/2410.24075"><span>ArXiv</span></a></li>
<li><a class="icon brands alt fa-youtube" href="https://www.youtube.com/watch?v=_AD5moplxB0"><span>Video</span></a></li>
<li><a class="icon brands alt fa-github" href="https://github.com/HakamShams/IDEE"><span>Code</span></a></li>
<li><a class="icon1 ai ai-open-data" href="https://doi.org/10.60507/FK2/RD9E33"><span>Dataset</span></a></li>
</ul>
</nav>
</div>
</section>
<!-- video -->
<section style="background: #f0f0f0; padding: 0em 0 0em 0">
<div class="container" >
<!-- Paper video. -->
<div class="video main">
<!-- Youtube embed code here -->
<!--<a class="image featured" ><img src="assets/images/video_cover_ide.jpg" alt="Video"/> </a> -->
<iframe src="https://www.youtube.com/embed/_AD5moplxB0" frameborder="0" allow="autoplay; encrypted-media" allowfullscreen></iframe>
<!-- </div> -->
</div>
</section>
<!-- Abstract -->
<section id="main">
<div class="container">
<div id="abstract content">
<!-- Post -->
<article class="box post">
<header>
<h2>Abstract</h2>
<p align="justify" style="color:black"> The spatio-temporal relations of extreme events impacts and their drivers in climate data are not fully understood and there is a need of machine learning approaches to identify such spatio-temporal relations from data.
The task, however, is very challenging since there are time delays between extremes and their drivers, and the spatial response of such drivers is inhomogeneous.
In this work, we propose a first approach and benchmarks to tackle this challenge.
Our approach is trained end-to-end to predict spatio-temporally extremes and spatio-temporally drivers in the physical input variables jointly.
We assume that there exist precursor drivers, primarily as anomalies in assimilated land surface and atmospheric data, for every observable impact of extremes.
By enforcing the network to predict extremes from spatio-temporal binary masks of identified drivers, the network successfully identifies drivers that are correlated with extremes.
We evaluate our approach on three newly created synthetic benchmarks where two of them are based on remote sensing or reanalysis climate data and on two real-world reanalysis datasets. </p>
</header>
</article>
</div>
</div>
</section>
<!-- overview -->
<section style="background: #000000; padding: 1em 0 4em 0">
<div class="container">
<div class="row aln-center">
<!-- Content -->
<div class="col-9">
<!-- Post -->
<article class="box post">
<header>
<h2 style="color:#FFFFFF; text-align: center">Overeview</h2>
</header>
<a href="IDE/assets/images/overview.jpg" class="image featured"><img src="IDE/assets/images/overview.jpg" alt="Overview of the task" /></a>
<p style="color:#FFFFFF;">Overview of the objective of this work.
We are interested in identifying spatio-temporal relations between the measurable <strong><span style="color:#BC82B5"> impacts of extreme events </span></strong> like the vegetation health index and their <strong><span style="color:#ff4b4b"> drivers</span></strong>.
As drivers, we focus on anomalies in state variables of the land-atmosphere and hydrological cycle.
The task is very challenging since the drivers can occur at a different region than the extreme event and earlier in time.
</p>
</article>
</div>
</div>
</div>
</section>
<section style="background: #ffffff; padding: 0em 0 2em 0">
<div class="container">
<div class="row aln-center">
<!-- Content -->
<div class="col-9">
<!-- Post -->
<article class="box post">
<header>
<h2>Model architecture</h2>
</header>
<a href="IDE/assets/images/model.jpg" class="image featured"><img src="IDE/assets/images/model.jpg" alt="model design" /></a>
<p>An overview of the proposed model to identify the spatio-temporal relations between extreme agricultural droughts and drivers.
The input variables are first encoded into features.
In a subsequent step, a lockup free quantization layer (LFQ) takes the extracted features and classifies the variables into a binary representation of normal or anomalous events.
Finally, a classifier is used to predict extreme events from the identified anomalies.</p>
</article>
</div>
</div>
</div>
</section>
<!-- Baselines -->
<section id="features" style="background: #FFFFFF; padding: 0em 0 2em 0">
<div class="container">
<header>
<h2>Comparison to the baselines</h2>
</header>
<div class="row aln-center">
<div class="col-5">
<!-- Feature -->
<section>
<a href="IDE/assets/images/table.png" class="image featured"><img src="IDE/assets/images/table.png" alt="Comparison to the baselines 1" /></a>
</section>
</div>
<div class="col-5">
<!-- Feature -->
<section>
<a href="IDE/assets/images/dropped_variabels.png" class="image featured"><img src="IDE/assets/images/dropped_variabels.png" alt="Comparison to the baselines 2" /></a>
</section>
</div>
</div>
</div>
<!-- Prediction Regions -->
<section style="background: #000000; padding: 1em 0 2em 0">
<div class="container">
<header><h2 style="color:#FFFFFF; text-align: center">Results on real-world reanalysis data</h2></header>
<div class="row aln-center">
<!-- Content -->
<div class="col-10">
<!-- Post -->
<div class="carousel results-carousel">
<div class="item">
<img class="image fit" src="IDE/assets/images/AFR_2017020.jpg" alt="Africa (AFR-11)"/>
<h3 class="header" style="color: white; text-align: center">
Qualitative results on <span style="color:#cd932b"> ERA5-Land </span> for <span style="color:#cd932b"> Africa (AFR-11)</span>.
Shown are the identified drivers and anomalies for each variable along with the prediction of extreme agricultural droughts on the top left.
</h3>
</div>
<div class="item">
<img class="image fit" src="IDE/assets/images/NAM_2018019.jpg" alt="North America (NAM-11)"/>
<h3 class="header" style="color: white; text-align: center">
Qualitative results on <span style="color:#cd932b"> ERA5-Land </span> for <span style="color:#cd932b"> North America (NAM-11)</span>.
Shown are the identified drivers and anomalies for each variable along with the prediction of extreme agricultural droughts on the top left. </h3>
</div>
<div class="item">
<img class="image fit" src="IDE/assets/images/SAM_2019050.jpg" alt="South America (SAM-11)"/>
<h3 class="header" style="color: white; text-align: center">
Qualitative results on <span style="color:#cd932b"> ERA5-Land </span> for <span style="color:#cd932b"> South America (SAM-11)</span>.
Shown are the identified drivers and anomalies for each variable along with the prediction of extreme agricultural droughts on the top left. </h3>
</div>
<div class="item">
<img class="image fit" src="IDE/assets/images/EAS_2020009.jpg" alt="East Asia (EAS-11)"/>
<h3 class="header" style="color: white; text-align: center">
Qualitative results on <span style="color:#cd932b"> ERA5-Land </span> for <span style="color:#cd932b"> East Asia (EAS-11)</span>.
Shown are the identified drivers and anomalies for each variable along with the prediction of extreme agricultural droughts on the top left. </h3>
</div>
<div class="item">
<img class="image fit" src="IDE/assets/images/CAS_2021026.jpg" alt="Central Asis (CAS-11)"/>
<h3 class="header" style="color: white; text-align: center">
Qualitative results on <span style="color:#cd932b"> ERA5-Land </span> for <span style="color:#cd932b"> Central Asis (CAS-11)</span>.
Shown are the identified drivers and anomalies for each variable along with the prediction of extreme agricultural droughts on the top left. </h3>
</div>
<div class="item">
<img class="image fit" src="IDE/assets/images/EUR_2022046.jpg" alt="Europe"/>
<h3 class="header" style="color: white; text-align: center">
Qualitative results on <span style="color:#cd932b"> CERRA </span> for <span style="color:#cd932b"> Europe </span>.
Shown are the identified drivers and anomalies for each variable along with the prediction of extreme agricultural droughts on the top left. </h3>
</div>
<div class="item">
<img class="image fit" src="IDE/assets/images/CERRA_2020045.jpg" alt="Europe (EUR-11)"/>
<h3 class="header" style="color: white; text-align: center">
Qualitative results on <span style="color:#cd932b"> ERA5-Land </span> for <span style="color:#cd932b"> Europe (EUR-11)</span>.
Shown are the identified drivers and anomalies for each variable along with the prediction of extreme agricultural droughts on the top left. </h3>
</div>
</div>
</div>
</div>
</div>
</section>
<!-- Results on real-world data NAM-11 -->
<section style="background: #FFFFFF; padding: 1em 0 0em 0">
<div class="container">
<header><h2 style="color:#000000; text-align: center">Results on real-world reanalysis data</h2></header>
<div class="row aln-center" >
<!-- Content -->
<div class="col-11">
<!-- Post -->
<article class="box post">
<a href="IDE/assets/gifs/qualitative_NAM.gif" class="image fit"><img src="IDE/assets/gifs/qualitative_NAM.gif" alt="Qualitative results on the ERA5-Land NAM-11 reanalysis" /></a>
<p>Qualitative results on <strong><span style="color:#cd932b"> ERA5-Land </span></strong> for <strong><span style="color:#cd932b"> North America (NAM-11)</span></strong>.
Shown are the identified drivers and anomalies for two variables along with the prediction of extreme agricultural droughts on the top right.</p>
</article>
</div>
</div>
</div>
</section>
<!-- Results on real-world data NAM-11-->
<!-- Results on synthetic data -->
<section style="background: #FFFFFF; padding: 1em 0 3em 0">
<div class="container">
<header><h2 style="color:#000000; text-align: center">Results on synthetic data</h2></header>
<div class="row aln-center" >
<!-- Content -->
<div class="col-11">
<!-- Post -->
<article class="box post">
<a href="IDE/assets/gifs/baselines.gif" class="image fit"><img src="IDE/assets/gifs/baselines.gif" alt="Qualitative results on the synthetic CERRA reanalysis" /></a>
<p>Qualitative results on the synthetic CERRA reanalysis from the test set.
Shown are the <strong><span style="color:#008080">prediction</span></strong>, the <strong><span style="color:#000080">ground truth</span></strong>, and the <strong><span style="color:#ff0000">false positive</span></strong>.
Albedo and relative humidity are not correlated with extremes, meaning that they do not have target anomalies but only random ones.</p>
</article>
</div>
</div>
</div>
</section>
<!-- Results on synthetic data -->
<section style="background: #000000; padding: 2em 0 2em 0">
<div class="container">
<header><h2 style="color:#FFFFFF; text-align: center">Results on real-world reanalysis data </h2></header>
<div class="row aln-center">
<div class="col-6">
<!-- Feature -->
<section>
<a href="IDE/assets/images/spatial_portugal.jpg" class="image featured"><img src="IDE/assets/images/spatial_portugal.jpg" alt="The averaged spatial distribution of anomalies" /></a>
<p style="color:#FFFFFF;">The averaged spatial distribution of drivers/anomalies related to <span style="color:#f6c68e">Portugal in Europe</span>.
For this experiment, we use prediction on EUR-11 from ERA5-Land and select frames (weeks) within the period 2018-2024 where there were extreme drought of at least 25% of the pixels in Portugal.
Then we normalize the identified anomalies by the total number of frames to obtain the final map.
</p>
</section>
</div>
<div class="col-6">
<!-- Feature -->
<section>
<a href="IDE/assets/images/spatial_nordrhein_westfalen.jpg" class="image featured"><img src="IDE/assets/images/spatial_nordrhein_westfalen.jpg" alt="The averaged spatial distribution of anomalies" /></a>
<p style="color:#FFFFFF;">The averaged spatial distribution of anomalies related to a specific place in <span style="color:#f6c68e"> Europe (North Rhine-Westphalia)</span>.
For this experiment, we use prediction on EUR-11 from ERA5-Land and select frames (weeks) within the period 2018-2024 where there were extreme drought of at least 25% of the pixels in the North Rhine-Westphalia.
Then we normalize the identified anomalies by the total number of frames to obtain the final map.
</p>
</section>
</div>
</div>
</div>
</section>
<!-- Reanalysis Dataset -->
<section id="features" style="background: #FFFFFF; padding: 1em 0 2em 0">
<div class="container">
<header>
<h2>Real-world reanalysis dataset</h2>
</header>
<div class="row aln-center">
<div class="col-6">
<!-- Feature -->
<section>
<header>
<h3> The definition of the domains used in the study </h3>
</header>
<a href="IDE/assets/gifs/domain_1.gif" class="image featured"><img src="IDE/assets/gifs/domain_1.gif" alt="The definition of the domains" /></a>
<p>
We conducted the experiments on two real-world reanalysis (ERA5-Land and CERRA) including data from five continents.
ERA5-Land reanalysis is mapped onto the CORDEX domains.
CERRA has its own domain definition.
</p>
</section>
</div>
<div class="col-6">
<!-- Feature -->
<section>
<header>
<h3>CORDEX Domains</h3>
</header>
<a href="IDE/assets/gifs/domain_2.gif" class="image featured"><img src="IDE/assets/gifs/domain_2.gif" alt="CORDEX Domains" /></a>
</section>
</div>
</div>
</div>
</section>
<!-- Synthetic Data -->
<section id="model" style="background: #ffffff; padding: 0em 0 2em 0">
<div class="container">
<div class="row aln-center">
<!-- Content -->
<div class="col-10">
<!-- Post -->
<article class="box post">
<header>
<h2>Synthetic dataset</h2>
</header>
<a href="IDE/assets/gifs/t_less.gif" class="image featured"><img src="IDE/assets/gifs/t_less.gif" alt="Perceptual examples of the synthetic CERRA reanalysis data" /></a>
<p>
Perceptual examples of the <strong> synthetic CERRA reanalysis data</strong>.
The target anomalies are visualized under each variable directly.
Here, albedo and relative humidity are not correlated with the extremes.
</p>
</article>
</div>
</div>
</div>
</section>
<!-- Synthetic Data -->
<section id="features" style="background: #FFFFFF; padding: 1em 0 2em 0">
<div class="container">
<header>
<h3>Perceptual examples of the synthetic data</h3>
</header>
<div class="row aln-center">
<div class="col-6">
<!-- Feature -->
<section>
<header>
<h3>Synthetic artificial data </h3>
</header>
<a href="IDE/assets/images/1314_14_exp1.jpg" class="image featured"><img src="IDE/assets/images/1314_14_exp1.jpg" alt="Synthetic artificial data" /></a>
<p> The target anomalies are visualized under each variable directly.
Here, variables 01 and 05 are not correlated with the extremes.</p>
</section>
</div>
<div class="col-6">
<!-- Feature -->
<section>
<header>
<h3>Synthetic CERRA reanalysis data </h3>
</header>
<a href="IDE/assets/images/1314_14_exp_3.jpg" class="image featured"><img src="IDE/assets/images/1314_14_exp_3.jpg" alt="Synthetic CERRA reanalysis data" /></a>
<p> The target anomalies are visualized under each variable directly.
Here, albedo and relative humidity are not correlated with the extremes.</p>
</section>
</div>
</div>
</div>
</section>
<!-- Trends -->
<section style="background: #000000; padding: 2em 0 2em 0">
<div class="container">
<header><h2 style="color:#FFFFFF; text-align: center">Visualization of the generated signals Φ</h2></header>
<div class="row aln-center">
<!-- Content -->
<div id="content" class="col-12">
<!-- Post -->
<div id="results-carousel" class="carousel results-carousel">
<div class="item">
<img class="image fit" src="IDE/assets/images/time_series_75_75_0.jpg" alt="albedo"/>
<h3 class="header" style="color: white; text-align: center">
Synthetic signal of <span style="color:#f6c68e">albedo</span> from CERRA climatology.
</h3>
</div>
<div class="item">
<img class="image fit" src="IDE/assets/images/time_series_75_75_1.jpg" alt="2m temperature"/>
<h3 class="header" style="color: white; text-align: center">
Synthetic signal of <span style="color:#d8af80">2m temperature</span> from CERRA climatology.
</h3>
</div>
<div class="item">
<img class="image fit" src="IDE/assets/images/time_series_75_75_2.jpg" alt="total cloud cover"/>
<h3 class="header" style="color: white; text-align: center">
Synthetic signal of <span style="color:#d8af80">total cloud cover</span> from CERRA climatology.
</h3>
</div>
<div class="item">
<img class="image fit" src="IDE/assets/images/time_series_75_75_3.jpg" alt="total precipitation"/>
<h3 class="header" style="color: white; text-align: center">
Synthetic signal of <span style="color:#d8af80">total precipitation</span> from CERRA climatology.
</h3>
</div>
<div class="item">
<img class="image fit" src="IDE/assets/images/time_series_75_75_4.jpg" alt="relative humidity"/>
<h3 class="header" style="color: white; text-align: center">
Synthetic signal of <span style="color:#d8af80">relative humidity</span> from CERRA climatology.
</h3>
</div>
<div class="item">
<img class="image fit" src="IDE/assets/images/time_series_75_75_5.jpg" alt="volumetric soil moisture"/>
<h3 class="header" style="color: white; text-align: center">
Synthetic signal of <span style="color:#d8af80">volumetric soil moisture</span> from CERRA climatology.
</h3>
</div>
</div>
</div>
</div>
</div>
</section>
<!-- Poster -->
<section style="background: white; padding: 2em 0 0em 0">
<div class="container">
<div class="row aln-center">
<!-- Content -->
<div class="col-11">
<!-- Post -->
<article class="box post">
<header>
<h2 align="left">Poster</h2>
</header>
<a href="IDE/assets/images/Shams_Gall_reduziert.jpg" class="image featured"><img src="IDE/assets/images/Shams_Gall_reduziert.jpg" alt="Poster" /></a>
<!--<iframe src="assets/pdfs/Shams_Gall.pdf" width="100%" height="1800px"></iframe>-->
</article>
</div>
</div>
</div>
</section>
<!-- BibTex citation -->
<section class="section" id="BibTeX" style="background: #F2F2F2; padding: 1em 0 1em 0">
<div class="container is-max-desktop content aln-center">
<h2 class="title">BibTeX</h2>
<pre style="text-align: left">
@inproceedings{IDEE,
author = {Shams Eddin, Mohamad Hakam and Gall, J\"{u}rgen},
booktitle = {Advances in Neural Information Processing Systems},
editor = {A. Globerson and L. Mackey and D. Belgrave and A. Fan and U. Paquet and J. Tomczak and C. Zhang},
pages = {93714--93766},
publisher = {Curran Associates, Inc.},
title = {Identifying Spatio-Temporal Drivers of Extreme Events},
url = {https://proceedings.neurips.cc/paper_files/paper/2024/file/aa7259c82d642e47d5661f3218cdcad2-Paper-Conference.pdf},
volume = {37},
year = {202d4}
}
</pre>
</div>
</section>
<section style="background: #ffffff; padding: 2em 0 3em 0">
<div class="container">
<header><h2 style="color:#000000; text-align: left">Dataset download </h2></header>
<!--<header><h2 style="color:#000000; text-align: left">BibTeX Dataset: </h2></header> -->
<div class="row aln-center" >
<!--<script src="https://bonndata.uni-bonn.de/resources/js/widgets.js?persistentId=doi:10.60507/FK2/RD9E33&amp;dvUrl=https://bonndata.uni-bonn.de&amp;widget=citation&amp;heightPx=260"></script> -->
<script src="https://bonndata.uni-bonn.de/resources/js/widgets.js?persistentId=doi:10.60507/FK2/RD9E33&amp;dvUrl=https://bonndata.uni-bonn.de&amp;widget=iframe&amp;heightPx=500"></script>
</div>
</div>
</section>
<!-- Footer -->
<section id="footer">
<div class="container">
<div class="columns is-centered">
<div class="column is-8">
<div class="content">
<p align="center">
This website is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/" target="_blank">Creative
Commons Attribution-ShareAlike 4.0 International License</a>. You are free to use the <a href="https://github.com/HakamShams/IDE">source code</a> of this website, we only ask you to give appropriate credits by mentioning the <a href="IDE.html">IDE</a> website and to consider the licences of the source codes.
</p>
<h3 align="center" style="color: white; font-size:22px"> Contact: <a href="mailto:shams@iai.uni-bonn.de">shams@iai.uni-bonn.de</a>
&emsp;&emsp;
<a href="mailto:gall@iai.uni-bonn.de">gall@iai.uni-bonn.de</a>
</h3>
</div>
</div>
</div>
</div>
<div id="copyright" class="container">
<ul class="links">
<li>&copy; All rights reserved</li>
<li>Design: <a href="https://hakamshams.github.io/Focal-TSMP/">Focal-TSMP</a> & <a href="http://html5up.net">HTML5 UP</a> &
<a href="https://nerfies.github.io">Nerfie</a>
</li>
<!-- <li>Contact: <a style="color: white" href="mailto:shams@iai.uni-bonn.de">shams@iai.uni-bonn.de</a> or
<a style="color: white" href="mailto:gall@iai.uni-bonn.de">gall@iai.uni-bonn.de</a></li> -->
</ul>
</div>
</section>
</div>
<!-- Scripts -->
<script src="IDE/assets/js/jquery.min.js"></script>
<script src="IDE/assets/js/jquery.dropotron.min.js"></script>
<script src="IDE/assets/js/browser.min.js"></script>
<script src="IDE/assets/js/breakpoints.min.js"></script>
<script src="IDE/assets/js/util.js"></script>
<script src="IDE/assets/js/main.js"></script>
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
<script src="IDE/assets/js/bulma-carousel.min.js"></script>
<script src="IDE/assets/js/bulma-slider.min.js"></script>
<script src="IDE/assets/js/index.js"></script>-->
</body>
</html>