Mqleet's picture
[update] templates
a3d3755
<!DOCTYPE html>
<html>
<head>
<meta content="text/html; charset=UTF-8" http-equiv="Content-Type">
<meta content="width=device-width, initial-scale=1" name="viewport">
<title>UAV3D: A Large-scale 3D Perception Benchmark for Unmanned Aerial Vehicles</title>
<!-- Google Tag Manager -->
<script async="" src="http://www.google-analytics.com/analytics.js"></script>
<script async="" src="https://www.googletagmanager.com/gtm.js?id=GTM-THP5XBK"></script>
<script>(function (w, d, s, l, i) {
w[l] = w[l] || [];
w[l].push({
'gtm.start':
new Date().getTime(), event: 'gtm.js'
});
var f = d.getElementsByTagName(s)[0],
j = d.createElement(s), dl = l != 'dataLayer' ? '&l=' + l : '';
j.async = true;
j.src =
'https://www.googletagmanager.com/gtm.js?id=' + i + dl;
f.parentNode.insertBefore(j, f);
})(window, document, 'script', 'dataLayer', 'GTM-THP5XBK');</script>
<!-- End Google Tag Manager -->
<link href="static/css/fontawesome.all.min.css" rel="stylesheet">
<link href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css" rel="stylesheet">
<link href="static/css/bulma.min.css" rel="stylesheet">
<link href="static/css/index.css" rel="stylesheet">
<script defer src="static/js/fontawesome.all.min.js"></script>
<script src="https://huiyegit.github.io/UAV3D_Benchmark/static/js/index.js"></script>
<script>
(function (i, s, o, g, r, a, m) {
i['GoogleAnalyticsObject'] = r;
i[r] = i[r] || function () {
(i[r].q = i[r].q || []).push(arguments)
}, i[r].l = 1 * new Date();
a = s.createElement(o),
m = s.getElementsByTagName(o)[0];
a.async = 1;
a.src = g;
m.parentNode.insertBefore(a, m)
})(window, document, 'script', '//www.google-analytics.com/analytics.js', 'ga');
ga('create', 'UA-72422365-1', 'auto');
ga('send', 'pageview');
</script>
</head>
<body>
<nav class="navbar" role="navigation" aria-label="main navigation">
<div class="navbar-brand">
<a role="button" class="navbar-burger" aria-label="menu" aria-expanded="false">
<span aria-hidden="true"></span>
<span aria-hidden="true"></span>
<span aria-hidden="true"></span>
</a>
</div>
</nav>
<section class="hero publication-header">
<div class="hero-body">
<div class="container">
<div class="columns is-centered">
<div class="column is-four-fifths">
<div class="column has-text-centered">
<!-- <div class="is-size-6 publication-venue">CVPR 2020</div> -->
<h3 class="title is-1 publication-title">UAV3D: A Large-scale 3D Perception Benchmark for Unmanned Aerial Vehicles</h3>
<div class="column has-text-centered">
<div class="is-size-5 publication-authors">
<span class="author-block">
<a href="https://tcv.gsu.edu/profile/hui-ye/">Hui Ye</a><sup>1</sup>,
</span>
<span class="author-block">
<a href="https://tinman.cs.gsu.edu/~raj/">Raj Sunderraman</a><sup>1</sup>,
</span>
<span class="author-block">
<a href="https://sji.soc.uconn.edu">Shihao Ji</a><sup>2</sup>
</span>
</div>
<div class="is-size-5 publication-authors">
<span class="author-block"><sup>1</sup>Georgia State University,</span>
<span class="author-block"><sup>2</sup>University of Connecticut</span>
</div>
<div class="publication-links">
<!-- <span class="link-block link-block-">
<a class="external-link button is-small is-rounded is-link" href="https://arxiv.org/pdf/1912.00416.pdf">
<span class="icon"> <i class="fas fa-file-pdf"></i> </span>
<span>PDF</span>
</a>
</span> -->
<span class="link-block link-block-">
<a class="external-link button is-small is-rounded is-link" href="https://arxiv.org/abs/2410.11125">
<span class="icon"><i class="ai ai-arxiv"></i></span>
<span>arXiv</span>
</a>
</span>
<span class="link-block link-block-">
<a class="external-link button is-small is-rounded is-link" href="https://github.com/huiyegit/UAV3D">
<span class="icon"><i class="fas fab fa-github"></i></span>
<span>UAV3D Code</span>
</a>
</span>
<span class="link-block link-block-">
<a class="external-link button is-small is-rounded is-link" href="https://drive.google.com/drive/folders/1dr0TSTDSmWV1FUn_kuXcrG_pMVoPpKuj?usp=share_link">
<span class="icon"><i class="fas fa-images"></i></span>
<span>UAV3D</span>
</a>
</span>
</div>
</div>
</div>
</div>
</div>
</section>
<section class="hero teaser">
<div class="container is-max-desktop">
<div class="hero-body">
<video id="teaser" autoplay muted controls playsinline height="100%">
<source src="static/videos/uav3d.mp4"
type="video/mp4">
</video>
<h2 class="subtitle has-text-centered">
<span class="dnerf">UAV3D</span> Demo
</h2>
</div>
</div>
</section>
<section class="section">
<div class="container">
<div class="content">
<!-- <div class="columns is-centered"> -->
<!-- <div class="column is-two-thirds"> -->
<!-- <h2 class="is-2">Video</h2> -->
<!-- <div class="publication-video"> -->
<!-- <iframe allow="autoplay; encrypted-media" -->
<!-- allowfullscreen frameborder="0" -->
<!-- src="https://www.youtube.com/embed/tlzcq1KYXd8?rel=0&amp;showinfo=0"></iframe> -->
<!-- </div> -->
<!-- </div> -->
<!-- </div> -->
<div class="columns is-centered">
<!-- <div class="column is-half"> -->
<div class="column is-two-thirds">
<h2>Introduction</h2>
<p> UAV3D is a public large-scale benchmark designed for 3D perception tasks from Unmanned Aerial Vehicle (UAV) platforms.
This benchmark comprises the synthetic data and 3D perception algorithms, aiming to facilitate research in both single UAV and collaborative UAVs 3D perception tasks.
</p>
<p> The UAV3D dataset comprises 1,000 scenes (700 scenes for training, 150 scenes for validation, and 150 scenes for test) with 500k RGB images
and 3.3 million 3D boxes. The dataset is organized in the format of nuScenes dataset, with the compatibility to the well-established nuScenes-devkit.
</p>
</div>
</div>
<div class="columns is-centered">
<div class="column is-two-thirds">
<img alt="UAV3D dataset" src="static/images/town10.jpg" width="1024"/>
</div>
</div>
<div class="columns is-centered">
<div class="column is-two-thirds">
<h2>Scene Planning</h2>
<!-- <p>We operate drones in Towns 3, 6, 7, and 10 of CARLA, with Town 10 being particularly known for its dense traffic and highly challenging driving situations.
We emphasize the variations between urban (Towns 3 and 10) and suburban (Towns 6 and 7) settings, particularly in
terms of traffic flow, vegetation, architecture, vehicles, and road markings. For each town in CARLA,
we have established 25 flight routes to cover a diverse range of locations from the bottom left to the
top right of the map.
</p> -->
<div class="content">
<ul>
<li> <span style="font-weight: bold;">Locations: </span> urban areas (Towns 3 and 10) and suburban areas (Towns 6 and 7) in Carla.</li>
<li> <span style="font-weight: bold;">Flight routes: </span> 250 routes from the bottom left to the
top right of each map. </li>
<li> <span style="font-weight: bold;">Scenes: </span> 700 training, 150 for validation, and 150 for testing.</li>
</ul>
</div>
</div>
</div>
<div class="columns is-centered">
<div class="column is-half">
<img alt="UAV3D dataset" src="static/images/town.jpg" width="512"/>
</div>
</div>
<div class="columns is-centered">
<div class="column is-two-thirds">
<h2>Sensor Setup</h2>
<!-- <p>we equip each drone with five RGB cameras to capture
both RGB and semantic images. Four of these cameras face the front, left, right, and back with
a pitch angle of -45 degrees, while the bottom camera provides a bird’s eye view. The resolution
of the images is 800x450 pixels.
</p> -->
<div class="content">
<ul>
<li> <span style="font-weight: bold;">Positions of RGB cameras: </span> front, left, right, center, and back.</li>
<li> <span style="font-weight: bold;">Rotation angle: </span> bottom camera provides a bird’s eye view, while the other four are
a pitch angle of -45 degrees.</li>
<li> <span style="font-weight: bold;">Resolution: </span> 800x450 pixels.</li>
</ul>
</div>
</div>
</div>
<div class="columns is-centered">
<div class="column is-half">
<img alt="Sensor Setup" src="static/images/sensor.jpg" width="400"/>
</div>
</div>
<div class="columns is-centered">
<div class="column is-two-thirds">
<h2>UAV Formation</h2>
<!-- <p>We configure a swarm of five UAVs in a cross-shaped
formation with the positions at the front, left, right, center, and back, each with 20 meters from
the center drone. The swarm of UAVs maintains the formation, while performing perception and
collaboration tasks at an altitude of 60 meters.
</p>
<p>We configure a swarm of five UAVs in a cross-shaped
formation with the positions at the front, left, right, center, and back, each with 20 meters from
the center drone. The swarm of UAVs maintains the formation, while performing perception and
collaboration tasks at an altitude of 60 meters.
</p> -->
<div class="content">
<ul>
<li> <span style="font-weight: bold;">Cross-shaped formation: </span> front, left, right, center, and back.</li>
<li> <span style="font-weight: bold;">Distance: </span> each with 20 meters from the center drone.</li>
<li> <span style="font-weight: bold;">Altitude: </span> the UAV swarm maintains an altitude of 60 meters.</li>
</ul>
</div>
</div>
</div>
<div class="columns is-centered">
<div class="column is-half">
<img alt="Sensor Setup" src="static/images/formation.jpg" width="700"/>
</div>
</div>
<div class="columns is-centered">
<div class="column is-two-thirds">
<h2>Data Format</h2>
<!-- <p>We offer various annotations, including 3D
bounding boxes, and pixel-wise semantic labels. Each 3D box is defined by the location of its center
in x, y, and z coordinates, along with dimensions of width, length, height, and orientation angles
(yaw, pitch, roll). There are 27 vehicle categories in the dataset. UAV3D comprises 500k images
and 3.3 million 3D boxes, divided into training, validation, and test splits. The dataset is organized
in a similar format as the popular nuScenes dataset, with the compatibility to the well-established
nuScenes-devkit.
</p> -->
<div class="content">
<ul>
<li> <span style="font-weight: bold;">Database schema: </span> nuScenes schema.</li>
<li> <span style="font-weight: bold;">Annotations: </span> 3D bounding boxes, pixel-wise semantic labels.</li>
<!-- <li> <span style="font-weight: bold;">Altitude: </span> the swarm of UAVs maintains an altitude of 60 meters.</li> -->
</ul>
</div>
</div>
</div>
<div class="columns is-centered">
<div class="column is-two-thirds">
<h2>Experiments</h2>
<p>We benchmark four standard perception tasks for UAVs:
single-UAV 3D object detection, single-UAV object tracking,
collaborative-UAV 3D object detection, and collaborative-UAV object tracking.
</p>
<!-- <p>We configure a swarm of five UAVs in a cross-shaped -->
<!-- formation with the positions at the front, left, right, center, and back, each with 20 meters from -->
<!-- the center drone. The swarm of UAVs maintains the formation, while performing perception and -->
<!-- collaboration tasks at an altitude of 60 meters. -->
<!-- </p> -->
<!-- <div class="content">
<ul>
<li> <span style="font-weight: bold;">Cross-shaped formation: </span> front, left, right, center, and back.</li>
<li> <span style="font-weight: bold;">Distance: </span> each with 20 meters from the center drone.</li>
<li> <span style="font-weight: bold;">Altitude: </span> the UAV swarm maintains an altitude of 60 meters.</li>
</ul>
</div> -->
</div>
</div>
<div class="columns is-centered">
<div class="column is-half">
<figcaption style="text-align: center; margin-top: 0px;">Table 1: 3D object detection results on the validation set of UAV3D.</figcaption>
<img alt="detection" src="static/images/detection.png" width="1200"/>
</div>
</div>
<div class="columns is-centered">
<div class="column is-half">
<figcaption style="text-align: center; margin-top: 1px;">Table 2: 3D object tracking results on the validation set of UAV3D.</figcaption>
<img alt="tracking" src="static/images/tracking.png" width="1200"/>
</div>
</div>
<div class="columns is-centered">
<!-- <div class="column is-half"> -->
<div class="column is-half" style="display: flex; flex-direction: column; align-items: center;">
<figcaption style="text-align: center; margin-top: 0px;">Table 3: Collaborative 3D object detection results on the validation set of UAV3D.</figcaption>
<img alt="detection" src="static/images/detection_com.png" width="500"/>
</div>
</div>
<div class="columns is-centered">
<!-- <div class="column is-half"> -->
<div class="column is-half" style="display: flex; flex-direction: column; align-items: center;">
<figcaption style="text-align: center; margin-top: 1px;">Table 4: Collaborative 3D object tracking results on the validation set of UAV3D.</figcaption>
<img alt="tracking" src="static/images/tracking_com.png" width="500"/>
</div>
</div>
<!-- <div class="columns is-centered">
<div class="column is-half">
<img alt="Sensor Setup" src="./static/images/tracking.png" width="700"/>
</div>
</div> -->
<div class="columns is-centered">
<div class="column is-two-thirds">
<div class="publication-body">
<h2 class="is-2">Code</h2>
<p>You can find our code from <a href="https://github.com/huiyegit/UAV3D">Github</a>.</p>
<h2 class="is-2">Dataset</h2>
<div class="columns">
<!-- <div class="column is-half"> -->
<!-- <img alt="MOPED dataset" src="./static/images/background.jpg"/> -->
<!-- </div> -->
<div class="column">
<p>The dataset is available for download from <a
href="https://drive.google.com/drive/folders/1dr0TSTDSmWV1FUn_kuXcrG_pMVoPpKuj?usp=share_link">Google Drive</a> or <a
href="https://pan.baidu.com/s/1qou0C-WXDfFpvih5OmFnVg?pwd=a6ha#list/path=%2F">Baidu Netdisk</a>.
</p>
</div>
</div>
<h2 class="is-2">Citation</h2>
<p>If you find the UAV3D dataset and/or code useful, please consider citing this paper.</p>
<pre><code class="lang-bibtex">@inproceedings{uav3d2024,
title={UAV3D: A Large-scale 3D Perception Benchmark for Unmanned Aerial Vehicles},
author={Hui Ye and Raj Sunderraman and Shihao Ji},
booktitle={The 38th Conference on Neural Information Processing Systems (NeurIPS)},
year={2024}
}</code></pre>
<h3 class="is-3">Acknowledgement</h3>
<p>The software and data were created by Georgia State University Research Foundation under
Army Research Laboratory (ARL) Award Numbers W911NF-22-2-0025 and W911NF-23-2-0224. ARL,
as the Federal awarding agency, reserves a royalty-free, nonexclusive and irrevocable right
to reproduce, publish, or otherwise use this software for Federal purposes, and to authorize
others to do so in accordance with 2 CFR 200.315(b).</p>
</div>
</div>
</div>
</div>
</div>
</section>
<!-- <footer class="footer"> -->
<!-- <div class="container"> -->
<!-- <div class="content has-text-centered"> -->
<!-- <a href="mailto:46Aik2sugTKFHX92@keunhong.com"> -->
<!-- <i class="fas fa-envelope"></i> -->
<!-- </a> -->
<!-- <a class="external-link" href="https://github.com/keunhong"> -->
<!-- <i class="fab fa-github"></i> -->
<!-- </a> -->
<!-- <a class="external-link" -->
<!-- href="https://scholar.google.com/citations?hl=en&view_op=list_works&gmla=AJsN-F6ma662dZahhSxXWh4usLcc9Y_4mLjlVZIydlL0F9lJgXde_tlP9Cws3dnoyrqppSz81tUGCG-RqawbVWHuOyy9PdPm3iZuxDLbCuYMem8YLzTQ1VA&user=HVZb-5oAAAAJ"> -->
<!-- <i class="ai ai-google-scholar"></i> -->
<!-- </a> -->
<!-- </div> -->
<!-- </footer> -->
</body>
</html>