Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -14,87 +14,67 @@ genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
|
| 14 |
|
| 15 |
|
| 16 |
def get_pdf_text(pdf_docs):
|
| 17 |
-
text=""
|
| 18 |
for pdf in pdf_docs:
|
| 19 |
-
pdf_reader= PdfReader(pdf)
|
| 20 |
for page in pdf_reader.pages:
|
| 21 |
-
text+= page.extract_text()
|
| 22 |
-
return
|
| 23 |
-
|
| 24 |
-
|
| 25 |
|
| 26 |
def get_text_chunks(text):
|
| 27 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
|
| 28 |
chunks = text_splitter.split_text(text)
|
| 29 |
return chunks
|
| 30 |
|
| 31 |
-
|
| 32 |
def get_vector_store(text_chunks):
|
| 33 |
-
embeddings = GoogleGenerativeAIEmbeddings(model
|
| 34 |
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
|
| 35 |
vector_store.save_local("faiss_index")
|
| 36 |
|
| 37 |
-
|
| 38 |
def get_conversational_chain():
|
| 39 |
-
|
| 40 |
prompt_template = """
|
| 41 |
Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
|
| 42 |
-
provided context just say, "answer is not available in the
|
| 43 |
Context:\n {context}?\n
|
| 44 |
Question: \n{question}\n
|
| 45 |
|
| 46 |
Answer:
|
| 47 |
"""
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
temperature=0.1)
|
| 51 |
-
|
| 52 |
-
prompt = PromptTemplate(template = prompt_template, input_variables = ["context", "question"])
|
| 53 |
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
|
| 54 |
-
|
| 55 |
return chain
|
| 56 |
|
| 57 |
-
|
| 58 |
-
|
| 59 |
def user_input(user_question):
|
| 60 |
-
embeddings = GoogleGenerativeAIEmbeddings(model
|
| 61 |
-
|
| 62 |
-
new_db = FAISS.load_local("faiss_index", embeddings,allow_dangerous_deserialization= True)
|
| 63 |
docs = new_db.similarity_search(user_question)
|
| 64 |
-
|
| 65 |
chain = get_conversational_chain()
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
st.
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
get_vector_store(text_chunks)
|
| 95 |
-
st.success("Done")
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
if __name__ == "__main__":
|
| 100 |
-
main()
|
|
|
|
| 14 |
|
| 15 |
|
| 16 |
def get_pdf_text(pdf_docs):
|
| 17 |
+
text = ""
|
| 18 |
for pdf in pdf_docs:
|
| 19 |
+
pdf_reader = PdfReader(pdf)
|
| 20 |
for page in pdf_reader.pages:
|
| 21 |
+
text += page.extract_text()
|
| 22 |
+
return text
|
|
|
|
|
|
|
| 23 |
|
| 24 |
def get_text_chunks(text):
|
| 25 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
|
| 26 |
chunks = text_splitter.split_text(text)
|
| 27 |
return chunks
|
| 28 |
|
|
|
|
| 29 |
def get_vector_store(text_chunks):
|
| 30 |
+
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
| 31 |
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
|
| 32 |
vector_store.save_local("faiss_index")
|
| 33 |
|
|
|
|
| 34 |
def get_conversational_chain():
|
|
|
|
| 35 |
prompt_template = """
|
| 36 |
Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
|
| 37 |
+
provided context just say, "answer is not available in the Provided PDF", don't provide the wrong answer\n\n
|
| 38 |
Context:\n {context}?\n
|
| 39 |
Question: \n{question}\n
|
| 40 |
|
| 41 |
Answer:
|
| 42 |
"""
|
| 43 |
+
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.1)
|
| 44 |
+
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
|
|
|
|
|
|
|
|
|
| 45 |
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
|
|
|
|
| 46 |
return chain
|
| 47 |
|
|
|
|
|
|
|
| 48 |
def user_input(user_question):
|
| 49 |
+
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
| 50 |
+
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
|
|
|
|
| 51 |
docs = new_db.similarity_search(user_question)
|
|
|
|
| 52 |
chain = get_conversational_chain()
|
| 53 |
+
response = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True)
|
| 54 |
+
return response["output_text"]
|
| 55 |
+
|
| 56 |
+
# Streamlit app initialization
|
| 57 |
+
st.title("Chat With PDF 📄")
|
| 58 |
+
|
| 59 |
+
if 'messages' not in st.session_state:
|
| 60 |
+
st.session_state.messages = [{'role': 'assistant', "content": 'Hello! Upload a PDF and ask me anything about its content.'}]
|
| 61 |
+
|
| 62 |
+
with st.sidebar:
|
| 63 |
+
st.title("Menu:")
|
| 64 |
+
uploaded_file = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True)
|
| 65 |
+
if st.button("Submit & Process"):
|
| 66 |
+
with st.spinner("Processing..."):
|
| 67 |
+
raw_text = get_pdf_text(uploaded_file)
|
| 68 |
+
text_chunks = get_text_chunks(raw_text)
|
| 69 |
+
get_vector_store(text_chunks)
|
| 70 |
+
st.success("Done")
|
| 71 |
+
|
| 72 |
+
user_prompt = st.chat_input("Ask me anything about the content of the PDF:")
|
| 73 |
+
if user_prompt:
|
| 74 |
+
st.session_state.messages.append({'role': 'user', "content": user_prompt})
|
| 75 |
+
response = user_input(user_prompt)
|
| 76 |
+
st.session_state.messages.append({'role': 'assistant', "content": response})
|
| 77 |
+
|
| 78 |
+
for message in st.session_state.messages:
|
| 79 |
+
with st.chat_message(message['role']):
|
| 80 |
+
st.write(message['content'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|