Update app.py
Browse files
app.py
CHANGED
|
@@ -1,146 +1,44 @@
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import requests
|
| 4 |
-
import inspect
|
| 5 |
import pandas as pd
|
| 6 |
-
from
|
| 7 |
-
from openai import OpenAI
|
| 8 |
-
from tenacity import retry, stop_after_attempt, wait_exponential
|
| 9 |
-
|
| 10 |
-
# Load environment variables
|
| 11 |
-
load_dotenv()
|
| 12 |
-
|
| 13 |
# (Keep Constants as is)
|
| 14 |
# --- Constants ---
|
| 15 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 16 |
-
OPENAI_MODEL = "openai/gpt-4.1" # or "gpt-3.5-turbo" based on your preference
|
| 17 |
|
| 18 |
|
| 19 |
# --- Basic Agent Definition ---
|
| 20 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
| 21 |
class BasicAgent:
|
| 22 |
def __init__(self):
|
| 23 |
-
"
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
)
|
| 29 |
-
print("BasicAgent initialized successfully.")
|
| 30 |
-
|
| 31 |
-
@retry(
|
| 32 |
-
stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10)
|
| 33 |
-
)
|
| 34 |
-
def _get_completion(self, prompt: str) -> str:
|
| 35 |
-
"""Get completion from OpenAI with retry logic."""
|
| 36 |
-
try:
|
| 37 |
-
response = self.client.chat.completions.create(
|
| 38 |
-
model=OPENAI_MODEL,
|
| 39 |
-
messages=[
|
| 40 |
-
{
|
| 41 |
-
"role": "developer",
|
| 42 |
-
"content": """
|
| 43 |
-
You are an expert research assistant that provides precise, accurate answers. Before responding, use this hidden planning phase (which will not be shown to users):
|
| 44 |
-
|
| 45 |
-
```
|
| 46 |
-
<planning>
|
| 47 |
-
1. Classify the question type:
|
| 48 |
-
- Arithmetic/mathematical calculation
|
| 49 |
-
- Factual lookup (dates, codes, definitions)
|
| 50 |
-
- Complex knowledge (requires synthesis of multiple facts)
|
| 51 |
-
- Subjective/opinion-based (requires reasoning with caveats)
|
| 52 |
-
|
| 53 |
-
2. For each type:
|
| 54 |
-
- Arithmetic: Calculate step-by-step to ensure accuracy
|
| 55 |
-
- Factual lookup: Identify the specific data point needed
|
| 56 |
-
- Complex knowledge: Break down into key components and relationships
|
| 57 |
-
- Subjective: Note major perspectives and evidence for each
|
| 58 |
-
|
| 59 |
-
3. Check for potential ambiguities or misinterpretations
|
| 60 |
-
4. Formulate the most precise answer possible
|
| 61 |
-
</planning>
|
| 62 |
-
```
|
| 63 |
-
|
| 64 |
-
## Response Format
|
| 65 |
-
|
| 66 |
-
After your planning, provide your answer in this format:
|
| 67 |
-
|
| 68 |
-
**Answer:** [Your concise, precise answer]
|
| 69 |
-
|
| 70 |
-
For factual questions, include only the exact information requested - no extra text.
|
| 71 |
-
For complex questions, provide a concise, well-structured response focused on accuracy.
|
| 72 |
-
|
| 73 |
-
## Examples
|
| 74 |
-
|
| 75 |
-
**Q: What is 493 × 27?**
|
| 76 |
-
<planning>Arithmetic calculation: 493 × 27 = (493 × 20) + (493 × 7) = 9,860 + 3,451 = 13,311</planning>
|
| 77 |
-
**Answer:** 13,311
|
| 78 |
-
|
| 79 |
-
**Q: Which country has the smallest land area in South America?**
|
| 80 |
-
<planning>Factual lookup: South American countries by land area. Smallest is Suriname at 63,251 square miles.</planning>
|
| 81 |
-
**Answer:** Suriname
|
| 82 |
-
|
| 83 |
-
**Q: How does atmospheric carbon dioxide affect ocean acidity?**
|
| 84 |
-
<planning>Complex knowledge question requiring synthesis of chemistry concepts...</planning>
|
| 85 |
-
**Answer:** Atmospheric CO₂ dissolves in seawater forming carbonic acid (H₂CO₃), which releases hydrogen ions and lowers pH. This process, called ocean acidification, has increased ocean acidity by approximately 30% since the Industrial Revolution.""",
|
| 86 |
-
},
|
| 87 |
-
{"role": "user", "content": prompt},
|
| 88 |
-
],
|
| 89 |
-
temperature=0.5, # Lower temperature for more consistent outputs
|
| 90 |
-
# max_tokens=1000,
|
| 91 |
-
)
|
| 92 |
-
return response.choices[0].message.content.strip()
|
| 93 |
-
except Exception as e:
|
| 94 |
-
print(f"Error in OpenAI API call: {e}")
|
| 95 |
-
raise
|
| 96 |
-
|
| 97 |
-
def _preprocess_question(self, question: str) -> str:
|
| 98 |
-
"""Preprocess the question to enhance clarity and context."""
|
| 99 |
-
enhanced_prompt = f"""Please analyze and answer the following question from the GAIA benchmark.
|
| 100 |
-
Question: {question}
|
| 101 |
-
|
| 102 |
-
Provide a clear, specific answer that can be evaluated through exact matching.
|
| 103 |
-
If the question requires multiple steps, please show your reasoning but ensure the final answer is clearly stated.
|
| 104 |
-
"""
|
| 105 |
-
return enhanced_prompt
|
| 106 |
-
|
| 107 |
def __call__(self, question: str) -> str:
|
| 108 |
-
"""Process the question and return an answer."""
|
| 109 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
-
|
| 112 |
-
# Preprocess the question
|
| 113 |
-
enhanced_prompt = self._preprocess_question(question)
|
| 114 |
-
|
| 115 |
-
# Get completion from OpenAI
|
| 116 |
-
response = self._get_completion(enhanced_prompt)
|
| 117 |
-
|
| 118 |
-
# Extract the final answer
|
| 119 |
-
# If the response contains multiple lines or explanations,
|
| 120 |
-
# we'll try to extract just the final answer
|
| 121 |
-
answer_lines = response.strip().split("\n")
|
| 122 |
-
final_answer = answer_lines[-1].strip()
|
| 123 |
-
|
| 124 |
-
# Log the response for debugging
|
| 125 |
-
print(f"Agent generated answer: {final_answer[:100]}...")
|
| 126 |
-
|
| 127 |
-
return final_answer
|
| 128 |
-
|
| 129 |
-
except Exception as e:
|
| 130 |
-
print(f"Error processing question: {e}")
|
| 131 |
-
return f"Error: {str(e)}"
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
| 135 |
"""
|
| 136 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
| 137 |
and displays the results.
|
| 138 |
"""
|
| 139 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
| 140 |
-
space_id = os.getenv("SPACE_ID")
|
| 141 |
|
| 142 |
if profile:
|
| 143 |
-
username
|
| 144 |
print(f"User logged in: {username}")
|
| 145 |
else:
|
| 146 |
print("User not logged in.")
|
|
@@ -167,16 +65,16 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
| 167 |
response.raise_for_status()
|
| 168 |
questions_data = response.json()
|
| 169 |
if not questions_data:
|
| 170 |
-
|
| 171 |
-
|
| 172 |
print(f"Fetched {len(questions_data)} questions.")
|
| 173 |
except requests.exceptions.RequestException as e:
|
| 174 |
print(f"Error fetching questions: {e}")
|
| 175 |
return f"Error fetching questions: {e}", None
|
| 176 |
except requests.exceptions.JSONDecodeError as e:
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
except Exception as e:
|
| 181 |
print(f"An unexpected error occurred fetching questions: {e}")
|
| 182 |
return f"An unexpected error occurred fetching questions: {e}", None
|
|
@@ -193,36 +91,18 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
| 193 |
continue
|
| 194 |
try:
|
| 195 |
submitted_answer = agent(question_text)
|
| 196 |
-
answers_payload.append(
|
| 197 |
-
|
| 198 |
-
)
|
| 199 |
-
results_log.append(
|
| 200 |
-
{
|
| 201 |
-
"Task ID": task_id,
|
| 202 |
-
"Question": question_text,
|
| 203 |
-
"Submitted Answer": submitted_answer,
|
| 204 |
-
}
|
| 205 |
-
)
|
| 206 |
except Exception as e:
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
{
|
| 210 |
-
"Task ID": task_id,
|
| 211 |
-
"Question": question_text,
|
| 212 |
-
"Submitted Answer": f"AGENT ERROR: {e}",
|
| 213 |
-
}
|
| 214 |
-
)
|
| 215 |
|
| 216 |
if not answers_payload:
|
| 217 |
print("Agent did not produce any answers to submit.")
|
| 218 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 219 |
|
| 220 |
-
# 4. Prepare Submission
|
| 221 |
-
submission_data = {
|
| 222 |
-
"username": username.strip(),
|
| 223 |
-
"agent_code": agent_code,
|
| 224 |
-
"answers": answers_payload,
|
| 225 |
-
}
|
| 226 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
| 227 |
print(status_update)
|
| 228 |
|
|
@@ -276,11 +156,9 @@ with gr.Blocks() as demo:
|
|
| 276 |
gr.Markdown(
|
| 277 |
"""
|
| 278 |
**Instructions:**
|
| 279 |
-
|
| 280 |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
| 281 |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
| 282 |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
| 283 |
-
|
| 284 |
---
|
| 285 |
**Disclaimers:**
|
| 286 |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
|
@@ -292,19 +170,20 @@ with gr.Blocks() as demo:
|
|
| 292 |
|
| 293 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
| 294 |
|
| 295 |
-
status_output = gr.Textbox(
|
| 296 |
-
label="Run Status / Submission Result", lines=5, interactive=False
|
| 297 |
-
)
|
| 298 |
# Removed max_rows=10 from DataFrame constructor
|
| 299 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
| 300 |
|
| 301 |
-
run_button.click(
|
|
|
|
|
|
|
|
|
|
| 302 |
|
| 303 |
if __name__ == "__main__":
|
| 304 |
-
print("\n" + "-"
|
| 305 |
# Check for SPACE_HOST and SPACE_ID at startup for information
|
| 306 |
space_host_startup = os.getenv("SPACE_HOST")
|
| 307 |
-
space_id_startup = os.getenv("SPACE_ID")
|
| 308 |
|
| 309 |
if space_host_startup:
|
| 310 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
|
@@ -312,18 +191,14 @@ if __name__ == "__main__":
|
|
| 312 |
else:
|
| 313 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
| 314 |
|
| 315 |
-
if space_id_startup:
|
| 316 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
| 317 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
| 318 |
-
print(
|
| 319 |
-
f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main"
|
| 320 |
-
)
|
| 321 |
else:
|
| 322 |
-
print(
|
| 323 |
-
"ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined."
|
| 324 |
-
)
|
| 325 |
|
| 326 |
-
print("-"
|
| 327 |
|
| 328 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
| 329 |
-
demo.launch(debug=True, share=False)
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import requests
|
|
|
|
| 4 |
import pandas as pd
|
| 5 |
+
from smolagents import CodeAgent, DuckDuckGoSearchTool, OpenAIServerModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
# (Keep Constants as is)
|
| 7 |
# --- Constants ---
|
| 8 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
|
| 9 |
|
| 10 |
|
| 11 |
# --- Basic Agent Definition ---
|
| 12 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
| 13 |
class BasicAgent:
|
| 14 |
def __init__(self):
|
| 15 |
+
print("BasicAgent initialized.")
|
| 16 |
+
# Initialize the model
|
| 17 |
+
#model = HfApiModel()
|
| 18 |
+
model = OpenAIServerModel(model_id="openai/gpt-4.1",api_key=os.environ["API_KEY"],api_base="https://models.github.ai/inference")
|
| 19 |
+
# Initialize the search tool
|
| 20 |
+
search_tool = DuckDuckGoSearchTool()
|
| 21 |
+
# Initialize Agent
|
| 22 |
+
self.agent = CodeAgent(
|
| 23 |
+
model = model,
|
| 24 |
+
tools=[search_tool]
|
| 25 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
def __call__(self, question: str) -> str:
|
|
|
|
| 27 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
| 28 |
+
fixed_answer =self.agent.run(question)
|
| 29 |
+
print(f"Agent returning fixed answer: {fixed_answer}")
|
| 30 |
+
return fixed_answer
|
| 31 |
|
| 32 |
+
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
"""
|
| 34 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
| 35 |
and displays the results.
|
| 36 |
"""
|
| 37 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
| 38 |
+
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
| 39 |
|
| 40 |
if profile:
|
| 41 |
+
username= f"{profile.username}"
|
| 42 |
print(f"User logged in: {username}")
|
| 43 |
else:
|
| 44 |
print("User not logged in.")
|
|
|
|
| 65 |
response.raise_for_status()
|
| 66 |
questions_data = response.json()
|
| 67 |
if not questions_data:
|
| 68 |
+
print("Fetched questions list is empty.")
|
| 69 |
+
return "Fetched questions list is empty or invalid format.", None
|
| 70 |
print(f"Fetched {len(questions_data)} questions.")
|
| 71 |
except requests.exceptions.RequestException as e:
|
| 72 |
print(f"Error fetching questions: {e}")
|
| 73 |
return f"Error fetching questions: {e}", None
|
| 74 |
except requests.exceptions.JSONDecodeError as e:
|
| 75 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
| 76 |
+
print(f"Response text: {response.text[:500]}")
|
| 77 |
+
return f"Error decoding server response for questions: {e}", None
|
| 78 |
except Exception as e:
|
| 79 |
print(f"An unexpected error occurred fetching questions: {e}")
|
| 80 |
return f"An unexpected error occurred fetching questions: {e}", None
|
|
|
|
| 91 |
continue
|
| 92 |
try:
|
| 93 |
submitted_answer = agent(question_text)
|
| 94 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 95 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
except Exception as e:
|
| 97 |
+
print(f"Error running agent on task {task_id}: {e}")
|
| 98 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
if not answers_payload:
|
| 101 |
print("Agent did not produce any answers to submit.")
|
| 102 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 103 |
|
| 104 |
+
# 4. Prepare Submission
|
| 105 |
+
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
| 107 |
print(status_update)
|
| 108 |
|
|
|
|
| 156 |
gr.Markdown(
|
| 157 |
"""
|
| 158 |
**Instructions:**
|
|
|
|
| 159 |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
| 160 |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
| 161 |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
|
|
|
| 162 |
---
|
| 163 |
**Disclaimers:**
|
| 164 |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
|
|
|
| 170 |
|
| 171 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
| 172 |
|
| 173 |
+
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
|
|
|
|
|
|
| 174 |
# Removed max_rows=10 from DataFrame constructor
|
| 175 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
| 176 |
|
| 177 |
+
run_button.click(
|
| 178 |
+
fn=run_and_submit_all,
|
| 179 |
+
outputs=[status_output, results_table]
|
| 180 |
+
)
|
| 181 |
|
| 182 |
if __name__ == "__main__":
|
| 183 |
+
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
| 184 |
# Check for SPACE_HOST and SPACE_ID at startup for information
|
| 185 |
space_host_startup = os.getenv("SPACE_HOST")
|
| 186 |
+
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
| 187 |
|
| 188 |
if space_host_startup:
|
| 189 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
|
|
|
| 191 |
else:
|
| 192 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
| 193 |
|
| 194 |
+
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
| 195 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
| 196 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
| 197 |
+
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
|
|
|
|
|
|
| 198 |
else:
|
| 199 |
+
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
|
|
|
|
|
|
| 200 |
|
| 201 |
+
print("-"*(60 + len(" App Starting ")) + "\n")
|
| 202 |
|
| 203 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
| 204 |
+
demo.launch(debug=True, share=False)
|