Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration # Import T5Tokenizer dan T5ForConditionalGeneration
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
# ---------- LOAD MODEL DAN TOKENIZER ----------
|
| 6 |
+
try:
|
| 7 |
+
# Memuat tokenizer dan model secara terpisah untuk model T5
|
| 8 |
+
tokenizer = T5Tokenizer.from_pretrained("cahya/t5-base-indonesian-summarization-cased")
|
| 9 |
+
model = T5ForConditionalGeneration.from_pretrained("cahya/t5-base-indonesian-summarization-cased")
|
| 10 |
+
|
| 11 |
+
# Pindahkan model ke GPU jika tersedia
|
| 12 |
+
device = 0 if torch.cuda.is_available() else -1
|
| 13 |
+
if device != -1:
|
| 14 |
+
model.to(f"cuda:{device}")
|
| 15 |
+
|
| 16 |
+
print("Model dan tokenizer Bahasa Indonesia berhasil dimuat.")
|
| 17 |
+
except Exception as e:
|
| 18 |
+
tokenizer = None
|
| 19 |
+
model = None
|
| 20 |
+
print(f"Error saat memuat model dan tokenizer: {str(e)}") # Cetak error ke konsol jika gagal dimuat
|
| 21 |
+
|
| 22 |
+
# ---------- SUMMARIZATION FUNCTION ----------
|
| 23 |
+
def summarize_text_simple(text_input, min_length_val=30, max_length_val=150):
|
| 24 |
+
# Cek apakah model dan tokenizer berhasil dimuat
|
| 25 |
+
if tokenizer is None or model is None:
|
| 26 |
+
return "❌ Error: Model ringkasan gagal dimuat. Coba lagi nanti."
|
| 27 |
+
|
| 28 |
+
if not text_input.strip():
|
| 29 |
+
return "⚠️ Mohon masukkan teks yang ingin diringkas!"
|
| 30 |
+
|
| 31 |
+
# Pastikan panjang minimum dan maksimum masuk akal
|
| 32 |
+
if min_length_val >= max_length_val:
|
| 33 |
+
return "⚠️ Panjang minimum harus lebih kecil dari panjang maksimum!"
|
| 34 |
+
if min_length_val <= 0 or max_length_val <= 0:
|
| 35 |
+
return "⚠️ Panjang tidak boleh nol atau negatif!"
|
| 36 |
+
|
| 37 |
+
try:
|
| 38 |
+
# Menambahkan prefix "summarize: " yang umum digunakan untuk T5 summarization
|
| 39 |
+
# Juga menambahkan truncation=True di tokenizer
|
| 40 |
+
input_ids = tokenizer.encode("summarize: " + text_input,
|
| 41 |
+
return_tensors="pt",
|
| 42 |
+
max_length=512, # Batasi panjang input token T5 (umumnya 512)
|
| 43 |
+
truncation=True)
|
| 44 |
+
|
| 45 |
+
# Pindahkan input_ids ke GPU jika model ada di GPU
|
| 46 |
+
if device != -1:
|
| 47 |
+
input_ids = input_ids.to(f"cuda:{device}")
|
| 48 |
+
|
| 49 |
+
# Lakukan generasi ringkasan
|
| 50 |
+
summary_ids = model.generate(
|
| 51 |
+
input_ids,
|
| 52 |
+
min_length=int(min_length_val),
|
| 53 |
+
max_length=int(max_length_val),
|
| 54 |
+
num_beams=4, # Jumlah beam untuk beam search (meningkatkan kualitas)
|
| 55 |
+
early_stopping=True # Hentikan generasi lebih awal jika semua beam selesai
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
# Dekode token hasil menjadi teks
|
| 59 |
+
summarized_text = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
| 60 |
+
|
| 61 |
+
result_message = f"""
|
| 62 |
+
<h3>Teks Ringkasan Anda:</h3>
|
| 63 |
+
<p>{summarized_text}</p>
|
| 64 |
+
"""
|
| 65 |
+
|
| 66 |
+
return result_message
|
| 67 |
+
|
| 68 |
+
except Exception as e:
|
| 69 |
+
return f"❌ Terjadi kesalahan saat meringkas: {str(e)}"
|
| 70 |
+
|
| 71 |
+
# ---------- GRADIO INTERFACE ----------
|
| 72 |
+
with gr.Blocks(title="Aplikasi Ringkasan Teks Sederhana (ID)") as demo:
|
| 73 |
+
gr.Markdown("# 📝 Aplikasi Ringkasan Teks Sederhana (Bahasa Indonesia)")
|
| 74 |
+
gr.Markdown("Masukkan teks panjang berbahasa Indonesia di bawah ini untuk mendapatkan versi ringkasnya.")
|
| 75 |
+
|
| 76 |
+
with gr.Row():
|
| 77 |
+
text_input = gr.Textbox(
|
| 78 |
+
label="Teks Asli (Bahasa Indonesia)",
|
| 79 |
+
placeholder="Masukkan teks panjang berbahasa Indonesia yang ingin Anda ringkas di sini...",
|
| 80 |
+
lines=10
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
with gr.Row():
|
| 84 |
+
min_length_slider = gr.Slider(
|
| 85 |
+
minimum=10,
|
| 86 |
+
maximum=100,
|
| 87 |
+
value=30,
|
| 88 |
+
step=1,
|
| 89 |
+
label="Panjang Ringkasan Minimum"
|
| 90 |
+
)
|
| 91 |
+
max_length_slider = gr.Slider(
|
| 92 |
+
minimum=50,
|
| 93 |
+
maximum=200, # Batasi maksimum yang lebih masuk akal untuk ringkasan
|
| 94 |
+
value=80,
|
| 95 |
+
step=1,
|
| 96 |
+
label="Panjang Ringkasan Maksimum"
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
summarize_btn = gr.Button("✨ Ringkas Sekarang")
|
| 100 |
+
|
| 101 |
+
summary_output = gr.HTML(label="Hasil Ringkasan")
|
| 102 |
+
|
| 103 |
+
# Menghubungkan tombol ke fungsi ringkasan
|
| 104 |
+
summarize_btn.click(
|
| 105 |
+
fn=summarize_text_simple,
|
| 106 |
+
inputs=[text_input, min_length_slider, max_length_slider],
|
| 107 |
+
outputs=summary_output
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
gr.Markdown("""
|
| 111 |
+
---
|
| 112 |
+
<div style='text-align: center; margin-top: 20px;'>
|
| 113 |
+
<p>Didukung oleh Hugging Face Transformers (Model: cahya/t5-base-indonesian-summarization-cased) dan Gradio.</p>
|
| 114 |
+
</div>
|
| 115 |
+
""")
|
| 116 |
+
|
| 117 |
+
# Jalankan antarmuka
|
| 118 |
+
if __name__ == "__main__":
|
| 119 |
+
demo.launch()
|