Spaces:
Sleeping
Sleeping
File size: 1,176 Bytes
85e0efd eb1c0c7 a6d6a13 eb1c0c7 a6d6a13 eb1c0c7 a6d6a13 eb1c0c7 a6d6a13 85e0efd a6d6a13 eb1c0c7 a6d6a13 eb1c0c7 a6d6a13 eb1c0c7 a6d6a13 eb1c0c7 a6d6a13 eb1c0c7 a6d6a13 eb1c0c7 a6d6a13 eb1c0c7 a6d6a13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
import os
from dotenv import load_dotenv
import openai
import gradio as gr
# Load secret key from environment
XAI_API_KEY = os.getenv("XAI_API_KEY")
if not XAI_API_KEY:
raise ValueError("β XAI_API_KEY not found in environment.")
# OpenAI client for Grok
client = openai.OpenAI(api_key=XAI_API_KEY, base_url="https://api.x.ai/v1")
# Function to query Grok
def query_grok(prompt):
try:
completion = client.chat.completions.create(
model="grok-beta",
messages=[
{"role": "system", "content": "You are a helpful AI assistant."},
{"role": "user", "content": prompt},
],
temperature=0.2,
max_tokens=500
)
return completion.choices[0].message.content
except Exception as e:
return f"β API Error: {str(e)}"
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("## π GROK API Test in Hugging Face Space")
prompt_box = gr.Textbox(label="Enter your query", lines=2)
output_box = gr.Textbox(label="Grok Response", lines=10)
btn = gr.Button("Send")
btn.click(query_grok, inputs=prompt_box, outputs=output_box)
demo.launch()
|