Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,7 +3,7 @@ from PIL import Image
|
|
| 3 |
from torchvision import transforms, models
|
| 4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 5 |
import pandas as pd
|
| 6 |
-
import
|
| 7 |
import random
|
| 8 |
import urllib.parse
|
| 9 |
import torch.nn as nn
|
|
@@ -84,11 +84,8 @@ model_resnet = DualOutputResNet(num_styles, num_artists).to(device)
|
|
| 84 |
optimizer = torch.optim.Adam(model_resnet.parameters(), lr=0.001, weight_decay=1e-5)
|
| 85 |
scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=3, verbose=True)
|
| 86 |
|
| 87 |
-
# Load
|
| 88 |
-
|
| 89 |
-
preprocess_clip = open_clip.image_transform((224, 224), is_train=False)
|
| 90 |
-
tokenizer_clip = open_clip.get_tokenizer('ViT-B/32')
|
| 91 |
-
model_clip.eval()
|
| 92 |
|
| 93 |
model_name = "EleutherAI/gpt-neo-1.3B"
|
| 94 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
| 3 |
from torchvision import transforms, models
|
| 4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 5 |
import pandas as pd
|
| 6 |
+
from sentence_transformers import SentenceTransformer
|
| 7 |
import random
|
| 8 |
import urllib.parse
|
| 9 |
import torch.nn as nn
|
|
|
|
| 84 |
optimizer = torch.optim.Adam(model_resnet.parameters(), lr=0.001, weight_decay=1e-5)
|
| 85 |
scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=3, verbose=True)
|
| 86 |
|
| 87 |
+
# Load SentenceTransformer model
|
| 88 |
+
clip_model = SentenceTransformer('sentence-transformers/clip-ViT-B-32-multilingual-v1').to(device)
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
model_name = "EleutherAI/gpt-neo-1.3B"
|
| 91 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|