Spaces:
Build error
Build error
File size: 11,255 Bytes
ec96645 77020df ec96645 77020df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
import os
import re
import time
import json
from datetime import datetime
import streamlit as st
# =====================================================
# CONFIGURAZIONE BASE
# =====================================================
st.set_page_config(page_title="Colegium-AI", page_icon="🤖", layout="wide")
st.title("🤖 Colegium-AI - Assistant Conversationnel")
# =====================================================
# GESTIONE CONVERSAZIONI
# =====================================================
CONV_FILE = "conversations.json"
def load_conversations():
"""Carica le conversazioni salvate."""
if os.path.exists(CONV_FILE):
try:
with open(CONV_FILE, "r", encoding="utf-8") as f:
return json.load(f)
except:
return {}
return {}
def save_conversations(convs):
"""Salva le conversazioni."""
with open(CONV_FILE, "w", encoding="utf-8") as f:
json.dump(convs, f, ensure_ascii=False, indent=2)
# =====================================================
# INIZIALIZZAZIONE SESSIONE
# =====================================================
if "conversations" not in st.session_state:
st.session_state.conversations = load_conversations()
if "current_chat" not in st.session_state:
st.session_state.current_chat = None
if "messages" not in st.session_state:
st.session_state.messages = []
if "model_loaded" not in st.session_state:
st.session_state.model_loaded = False
# =====================================================
# CARICAMENTO MODELLO LEGGERO
# =====================================================
@st.cache_resource(show_spinner=False)
def load_model():
"""Carica un modello leggero e veloce per CPU."""
try:
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch
# 🎯 Modello leggero: microsoft/DialoGPT-medium (350M parametri)
# Ottimo per conversazioni, veloce su CPU
model_name = "microsoft/DialoGPT-medium"
st.info("🔄 Caricamento del modello... (30-60 secondi)")
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float32,
low_cpu_mem_usage=True
)
# Configura padding token
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
st.success("✅ Modello caricato con successo!")
return tokenizer, model, device
except Exception as e:
st.error(f"❌ Errore: {e}")
return None, None, None
# =====================================================
# SIDEBAR - GESTIONE CONVERSAZIONI
# =====================================================
with st.sidebar:
st.header("💬 Conversazioni")
# Nuovo chat
if st.button("➕ Nuova Conversazione", use_container_width=True):
chat_id = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
st.session_state.conversations[chat_id] = []
st.session_state.current_chat = chat_id
st.session_state.messages = []
save_conversations(st.session_state.conversations)
st.rerun()
st.divider()
# Lista conversazioni
chat_keys = list(st.session_state.conversations.keys())
if chat_keys:
for chat in reversed(chat_keys[-10:]): # Mostra ultime 10
col1, col2 = st.columns([4, 1])
with col1:
if st.button(
f"📝 {chat}",
key=f"chat_{chat}",
use_container_width=True,
type="primary" if chat == st.session_state.current_chat else "secondary"
):
st.session_state.current_chat = chat
st.session_state.messages = st.session_state.conversations[chat]
st.rerun()
with col2:
if st.button("🗑️", key=f"del_{chat}"):
del st.session_state.conversations[chat]
save_conversations(st.session_state.conversations)
if st.session_state.current_chat == chat:
st.session_state.current_chat = None
st.session_state.messages = []
st.rerun()
else:
st.info("Nessuna conversazione.\nClicca '➕' per iniziare!")
st.divider()
# Informazioni
st.caption("🤖 **Colegium AI**")
st.caption("Creato da Pepe Musafiri")
st.caption(f"💬 {len(chat_keys)} conversazioni salvate")
# =====================================================
# CARICA MODELLO
# =====================================================
if not st.session_state.model_loaded:
with st.spinner("Inizializzazione..."):
tokenizer, model, device = load_model()
if model is not None:
st.session_state.tokenizer = tokenizer
st.session_state.model = model
st.session_state.device = device
st.session_state.model_loaded = True
else:
st.error("Impossibile caricare il modello. Ricarica la pagina.")
st.stop()
# =====================================================
# FUNZIONE GENERAZIONE RISPOSTA
# =====================================================
def generate_response(prompt, chat_history):
"""Genera risposta usando il modello."""
try:
tokenizer = st.session_state.tokenizer
model = st.session_state.model
device = st.session_state.device
# Costruisci il contesto (ultimi 5 scambi)
context_ids = []
for msg in chat_history[-5:]:
if msg["role"] == "user":
input_ids = tokenizer.encode(msg["content"] + tokenizer.eos_token, return_tensors="pt")
context_ids.append(input_ids)
elif msg["role"] == "assistant":
response_ids = tokenizer.encode(msg["content"] + tokenizer.eos_token, return_tensors="pt")
context_ids.append(response_ids)
# Aggiungi nuovo input
new_input_ids = tokenizer.encode(prompt + tokenizer.eos_token, return_tensors="pt")
# Concatena tutto il contesto
if context_ids:
bot_input_ids = torch.cat(context_ids + [new_input_ids], dim=-1)
else:
bot_input_ids = new_input_ids
# Limita lunghezza per CPU
if bot_input_ids.shape[-1] > 512:
bot_input_ids = bot_input_ids[:, -512:]
bot_input_ids = bot_input_ids.to(device)
# Genera risposta
with torch.no_grad():
chat_history_ids = model.generate(
bot_input_ids,
max_new_tokens=100,
do_sample=True,
temperature=0.7,
top_p=0.9,
top_k=50,
repetition_penalty=1.2,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id,
no_repeat_ngram_size=3
)
# Decodifica solo la nuova risposta
response = tokenizer.decode(
chat_history_ids[:, bot_input_ids.shape[-1]:][0],
skip_special_tokens=True
)
# Pulizia
response = response.strip()
response = re.sub(r'\n{3,}', '\n\n', response)
response = re.sub(r'[ ]{2,}', ' ', response)
if not response:
response = "Je suis désolé, je n'ai pas pu générer une réponse appropriée. Pouvez-vous reformuler votre question ?"
return response
except Exception as e:
return f"⚠️ Erreur lors de la génération: {str(e)}"
# =====================================================
# EFFETTO TYPEWRITER
# =====================================================
def typewriter_effect(text, placeholder, speed=0.02):
"""Effetto macchina da scrivere."""
displayed = ""
for char in text:
displayed += char
placeholder.markdown(displayed + "▌")
time.sleep(speed)
placeholder.markdown(displayed)
# =====================================================
# AREA CHAT
# =====================================================
# Mostra messaggi esistenti
for msg in st.session_state.messages:
with st.chat_message(msg["role"], avatar="👤" if msg["role"] == "user" else "🤖"):
st.write(msg["content"])
# Input utente
if prompt := st.chat_input("💬 Posez votre question ici..."):
# Crea nuova conversazione se necessario
if st.session_state.current_chat is None:
chat_id = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
st.session_state.current_chat = chat_id
st.session_state.conversations[chat_id] = []
# Aggiungi messaggio utente
user_message = {"role": "user", "content": prompt}
st.session_state.messages.append(user_message)
# Mostra messaggio utente
with st.chat_message("user", avatar="👤"):
st.write(prompt)
# Genera e mostra risposta AI
with st.chat_message("assistant", avatar="🤖"):
placeholder = st.empty()
with st.spinner("🤔 Réflexion en cours..."):
response = generate_response(prompt, st.session_state.messages)
# Effetto typewriter
typewriter_effect(response, placeholder, speed=0.015)
# Aggiungi risposta AI
assistant_message = {"role": "assistant", "content": response}
st.session_state.messages.append(assistant_message)
# Salva conversazione
st.session_state.conversations[st.session_state.current_chat] = st.session_state.messages
save_conversations(st.session_state.conversations)
st.rerun()
# =====================================================
# MESSAGGIO INIZIALE
# =====================================================
if len(st.session_state.messages) == 0:
st.info("👋 **Bienvenue sur Colegium AI !**\n\nJe suis votre assistant conversationnel créé par Pepe Musafiri.\n\nPosez-moi une question pour commencer la conversation !")
# Suggerimenti
st.subheader("💡 Exemples de questions:")
col1, col2 = st.columns(2)
with col1:
if st.button("🌍 Parle-moi de l'intelligence artificielle", use_container_width=True):
st.session_state.temp_prompt = "Parle-moi de l'intelligence artificielle"
st.rerun()
if st.button("📚 Qu'est-ce que le machine learning ?", use_container_width=True):
st.session_state.temp_prompt = "Qu'est-ce que le machine learning ?"
st.rerun()
with col2:
if st.button("💻 Comment devenir développeur ?", use_container_width=True):
st.session_state.temp_prompt = "Comment devenir développeur ?"
st.rerun()
if st.button("🤖 Raconte-moi une blague", use_container_width=True):
st.session_state.temp_prompt = "Raconte-moi une blague"
st.rerun() |