Spaces:
Runtime error
Runtime error
| from ragatouille import RAGPretrainedModel | |
| import subprocess | |
| import json | |
| import firebase_admin | |
| from firebase_admin import credentials, firestore | |
| import logging | |
| from pathlib import Path | |
| from time import perf_counter | |
| from datetime import datetime | |
| import gradio as gr | |
| from jinja2 import Environment, FileSystemLoader | |
| import numpy as np | |
| from sentence_transformers import CrossEncoder | |
| from backend.query_llm import generate_hf, generate_openai | |
| from backend.semantic_search import table, retriever | |
| VECTOR_COLUMN_NAME = "vector" | |
| TEXT_COLUMN_NAME = "text" | |
| proj_dir = Path(__file__).parent | |
| # Setting up the logging | |
| logging.basicConfig(level=logging.INFO) | |
| logger = logging.getLogger(__name__) | |
| # Set up the template environment with the templates directory | |
| env = Environment(loader=FileSystemLoader(proj_dir / 'templates')) | |
| # Load the templates directly from the environment | |
| template = env.get_template('template.j2') | |
| template_html = env.get_template('template_html.j2') | |
| service_account_key='firebase.json' | |
| # Create a Certificate object from the service account info | |
| cred = credentials.Certificate(service_account_key) | |
| # Initialize the Firebase Admin | |
| firebase_admin.initialize_app(cred) | |
| # # Create a reference to the Firestore database | |
| db = firestore.client() | |
| # Examples | |
| examples = ['when i have to report to constituency?','what is social media and what are rules related to it for expenditure monitoring ', | |
| 'how many reports to be submitted by Expenditure observer with annexure names ?','what is expenditure limits for parlimentary constituency and assembly constituency' | |
| ] | |
| #db usage | |
| collection_name = 'Nirvachana' # Replace with your collection name | |
| field_name = 'message_count' # Replace with your field name for count | |
| def get_and_increment_value_count(db , collection_name, field_name): | |
| """ | |
| Retrieves a value count from the specified Firestore collection and field, | |
| increments it by 1, and updates the field with the new value.""" | |
| collection_ref = db.collection(collection_name) | |
| doc_ref = collection_ref.document('count_doc') # Assuming a dedicated document for count | |
| # Use a transaction to ensure consistency across reads and writes | |
| try: | |
| with db.transaction() as transaction: | |
| # Get the current value count (or initialize to 0 if it doesn't exist) | |
| current_count_doc = doc_ref.get() | |
| current_count_data = current_count_doc.to_dict() | |
| if current_count_data: | |
| current_count = current_count_data.get(field_name, 0) | |
| else: | |
| current_count = 0 | |
| # Increment the count | |
| new_count = current_count + 1 | |
| # Update the document with the new count | |
| transaction.set(doc_ref, {field_name: new_count}) | |
| return new_count | |
| except Exception as e: | |
| print(f"Error retrieving and updating value count: {e}") | |
| return None # Indicate error | |
| def update_count_html(): | |
| usage_count = get_and_increment_value_count(db ,collection_name, field_name) | |
| ccount_html = gr.HTML(value=f""" | |
| <div style="display: flex; justify-content: flex-end;"> | |
| <span style="font-weight: bold; color: maroon; font-size: 18px;">No of Usages:</span> | |
| <span style="font-weight: bold; color: maroon; font-size: 18px;">{usage_count}</span> | |
| </div> | |
| """) | |
| return count_html | |
| def store_message(db,query,answer,cross_encoder): | |
| timestamp = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") | |
| # Create a new document reference with a dynamic document name based on timestamp | |
| new_completion= db.collection('Nirvachana').document(f"chatlogs_{timestamp}") | |
| new_completion.set({ | |
| 'query': query, | |
| 'answer':answer, | |
| 'created_time': firestore.SERVER_TIMESTAMP, | |
| 'embedding': cross_encoder, | |
| 'title': 'Expenditure observer bot' | |
| }) | |
| def add_text(history, text): | |
| history = [] if history is None else history | |
| history = history + [(text, None)] | |
| return history, gr.Textbox(value="", interactive=False) | |
| def bot(history, cross_encoder): | |
| top_rerank = 15 | |
| top_k_rank = 10 | |
| query = history[-1][0] | |
| if not query: | |
| gr.Warning("Please submit a non-empty string as a prompt") | |
| raise ValueError("Empty string was submitted") | |
| logger.warning('Retrieving documents...') | |
| # if COLBERT RAGATATOUILLE PROCEDURE : | |
| if cross_encoder=='(HIGH ACCURATE) ColBERT': | |
| gr.Warning('Retrieving using ColBERT.. First time query will take a minute for model to load..pls wait') | |
| RAG= RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0") | |
| RAG_db=RAG.from_index('.ragatouille/colbert/indexes/mockingbird') | |
| documents_full=RAG_db.search(query,k=top_k_rank) | |
| documents=[item['content'] for item in documents_full] | |
| # Create Prompt | |
| prompt = template.render(documents=documents, query=query) | |
| prompt_html = template_html.render(documents=documents, query=query) | |
| generate_fn = generate_hf | |
| history[-1][1] = "" | |
| for character in generate_fn(prompt, history[:-1]): | |
| history[-1][1] = character | |
| print('Final history is ',history) | |
| yield history, prompt_html | |
| store_message(db,history[-1][0],history[-1][1],cross_encoder) | |
| else: | |
| # Retrieve documents relevant to query | |
| document_start = perf_counter() | |
| query_vec = retriever.encode(query) | |
| logger.warning(f'Finished query vec') | |
| doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank) | |
| logger.warning(f'Finished search') | |
| documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_rerank).to_list() | |
| documents = [doc[TEXT_COLUMN_NAME] for doc in documents] | |
| logger.warning(f'start cross encoder {len(documents)}') | |
| # Retrieve documents relevant to query | |
| query_doc_pair = [[query, doc] for doc in documents] | |
| if cross_encoder=='(FAST) MiniLM-L6v2' : | |
| cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2') | |
| elif cross_encoder=='(FAIRLY ACCURATE) BGE reranker': | |
| cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base') | |
| cross_scores = cross_encoder1.predict(query_doc_pair) | |
| sim_scores_argsort = list(reversed(np.argsort(cross_scores))) | |
| logger.warning(f'Finished cross encoder {len(documents)}') | |
| documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]] | |
| logger.warning(f'num documents {len(documents)}') | |
| document_time = perf_counter() - document_start | |
| logger.warning(f'Finished Retrieving documents in {round(document_time, 2)} seconds...') | |
| # Create Prompt | |
| prompt = template.render(documents=documents, query=query) | |
| prompt_html = template_html.render(documents=documents, query=query) | |
| generate_fn = generate_hf | |
| history[-1][1] = "" | |
| for character in generate_fn(prompt, history[:-1]): | |
| history[-1][1] = character | |
| print('Final history is ',history) | |
| yield history, prompt_html | |
| store_message(db,history[-1][0],history[-1][1],cross_encoder) | |
| with gr.Blocks(theme='Insuz/SimpleIndigo') as demo: | |
| gr.HTML(value="""<div style="display: flex; align-items: center; justify-content: space-between;"> | |
| <h1 style="color: #008000">NIRVACHANA - <span style="color: #008000">Expenditure Observer AI Assistant</span></h1> | |
| <img src='logo.png' alt="Chatbot" width="50" height="50" /> | |
| </div>""",elem_id='heading') | |
| gr.HTML(value=f""" | |
| <p style="font-family: sans-serif; font-size: 16px;"> | |
| A free chat bot assistant for Expenditure Observers on Compendium on Election Expenditure Monitoring using Open source LLMs. <br> | |
| The bot can answer questions in natural language, taking relevant extracts from the ECI document which can be accessed <a href="https://www.eci.gov.in/eci-backend/public/api/download?url=LMAhAK6sOPBp%2FNFF0iRfXbEB1EVSLT41NNLRjYNJJP1KivrUxbfqkDatmHy12e%2Fzk1vx4ptJpQsKYHA87guoLjnPUWtHeZgKtEqs%2FyzfTTYIC0newOHHOjl1rl0u3mJBSIq%2Fi7zDsrcP74v%2FKr8UNw%3D%3D" style="color: #00008B; text-decoration: none;">CLICK HERE !</a>. | |
| </p> | |
| <p style="font-family: sans-serif; font-size: 14px; color: #808080;"> | |
| Disclaimer: This is an independent initiative and AI responses are guidance in nature. It is advised to reconfirm with the latest ECI circulars/instructions. | |
| </p> | |
| """, elem_id='Sub-heading') | |
| usage_count = get_and_increment_value_count(db,collection_name, field_name) | |
| gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 16px;">Developed by Ramesh M IRS (C& CE) (R-19187), Suggestions may be sent to <a href="mailto:mramesh.irs@gov.in" style="color: #00008B; font-style: italic;">mramesh.irs@gov.in</a>.</p>""", elem_id='Sub-heading1 ') | |
| count_html = gr.HTML(value=f""" | |
| <div style="display: flex; justify-content: flex-end;"> | |
| <span style="font-weight: bold; color: maroon; font-size: 18px;">No of Usages:</span> | |
| <span style="font-weight: bold; color: maroon; font-size: 18px;">{usage_count}</span> | |
| </div> | |
| """) | |
| chatbot = gr.Chatbot( | |
| [], | |
| elem_id="chatbot", | |
| avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg', | |
| 'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'), | |
| bubble_full_width=False, | |
| show_copy_button=True, | |
| show_share_button=True, | |
| ) | |
| with gr.Row(): | |
| txt = gr.Textbox( | |
| scale=3, | |
| show_label=False, | |
| placeholder="Enter text and press enter", | |
| container=False, | |
| ) | |
| txt_btn = gr.Button(value="Submit text", scale=1) | |
| cross_encoder = gr.Radio(choices=['(FAST) MiniLM-L6v2','(FAIRLY ACCURATE) BGE reranker','(HIGH ACCURATE) ColBERT'], value='(FAIRLY ACCURATE) BGE reranker',label="Embeddings", info="Only First query to Colbert may take litte time)") | |
| prompt_html = gr.HTML() | |
| # Turn off interactivity while generating if you click | |
| txt_msg = txt_btn.click(add_text, [chatbot, txt], [chatbot, txt], queue=False).then( | |
| bot, [chatbot, cross_encoder], [chatbot, prompt_html]).then(update_count_html,[],[count_html]) | |
| # Turn it back on | |
| txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False) | |
| # Turn off interactivity while generating if you hit enter | |
| txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then( | |
| bot, [chatbot, cross_encoder], [chatbot, prompt_html]).then(update_count_html,[],[count_html]) | |
| # Turn it back on | |
| txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False) | |
| # Examples | |
| gr.Examples(examples, txt) | |
| demo.queue() | |
| demo.launch(debug=True) | |