File size: 5,687 Bytes
903b444
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# Search engine β€” supports semantic search (SBERT + FAISS) and keyword search (BM25)

import os
import json
import re
import numpy as np
import pandas as pd
import faiss
import torch  # βœ… for GPU/CPU auto-detect
from sentence_transformers import SentenceTransformer
from config import VIDEO_METADATA, SEARCH_CONFIG

# For BM25 keyword ranking
from rank_bm25 import BM25Okapi
import nltk
# ❌ no downloads at import-time in production; ensure 'punkt' is installed in the image
from nltk.tokenize import word_tokenize

# βœ… Auto-select device (GPU on server, CPU locally)
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

# Paths
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
INDEX_PATH = os.path.join(BASE_DIR, "../data/embeddings/faiss.index")
METADATA_PATH = os.path.join(BASE_DIR, "../data/metadata.csv")

# Load model + indexes
MODEL_NAME = SEARCH_CONFIG.get("embedding_model", "all-MiniLM-L6-v2")
model = SentenceTransformer(MODEL_NAME, device=DEVICE)  # βœ… now uses GPU if available
faiss_index = faiss.read_index(INDEX_PATH)
metadata_df = pd.read_csv(METADATA_PATH)

# Build BM25 index
bm25_corpus = []
bm25_metadata = []

for _, row in metadata_df.iterrows():
    lines_raw = json.loads(row["lines"]) if isinstance(row["lines"], str) else row["lines"]
    if not lines_raw:
        continue
    for i, line in enumerate(lines_raw):
        bm25_corpus.append(word_tokenize(line["text"].lower()))
        bm25_metadata.append({
            "text": line["text"].strip(),
            "timestamp": line["timestamp"],
            "video_id": line["video_id"],
            "context_before": lines_raw[i - 1]["text"].strip() if i > 0 else "",
            "context_after": lines_raw[i + 1]["text"].strip() if i + 1 < len(lines_raw) else "",
            "summary_input": row["text"]
        })

bm25_index = BM25Okapi(bm25_corpus)

# Search function
def search_query(query, offset=0, top_k=SEARCH_CONFIG.get("results_per_page", 5), semantic_mode=True):
    """
    Search:
    - Semantic mode β†’ SBERT + FAISS + similarity threshold.
    - Keyword mode β†’ BM25 ranking over all subtitle lines.
    """
    if semantic_mode:
        query_vector = model.encode([query])
        faiss_top_k = SEARCH_CONFIG.get("faiss_top_k", 100)
        semantic_threshold = SEARCH_CONFIG.get("semantic_threshold", 0.40)
        semantic_top_n = SEARCH_CONFIG.get("semantic_top_n", 4)

        # Semantic search with FAISS
        D, I = faiss_index.search(np.array(query_vector), faiss_top_k)

        all_hits_with_scores = []
        for idx, score in zip(I[0], D[0]):
            current = metadata_df.iloc[idx]
            lines_raw = json.loads(current["lines"]) if isinstance(current["lines"], str) else current["lines"]

            if not lines_raw:
                continue

            # Encode all lines in this chunk
            line_texts = [line["text"] for line in lines_raw]
            line_vectors = model.encode(line_texts)
            query_vec = query_vector[0]
            similarities = np.dot(line_vectors, query_vec) / (
                np.linalg.norm(line_vectors, axis=1) * np.linalg.norm(query_vec)
            )

            line_indices = [i for i, sim in enumerate(similarities) if sim >= semantic_threshold]
            line_indices.sort(key=lambda i: similarities[i], reverse=True)
            line_indices = line_indices[:semantic_top_n]

            for i in line_indices:
                match_text = lines_raw[i]["text"]
                match_time = lines_raw[i]["timestamp"]
                video_id = lines_raw[i]["video_id"]
                if re.search(re.escape(query), match_text, re.IGNORECASE):
                    score -= 0.05

                friendly_key = next((k for k, v in VIDEO_METADATA.items() if v["id"] == video_id), None)
                video_title = VIDEO_METADATA[friendly_key]["title"] if friendly_key else "Unknown Video"

                before = lines_raw[i - 1]["text"] if i > 0 else ""
                after = lines_raw[i + 1]["text"] if i + 1 < len(lines_raw) else ""
                summary_block = current["text"]

                all_hits_with_scores.append((
                    score,
                    {
                        "text": match_text.strip(),
                        "context_before": before.strip(),
                        "context_after": after.strip(),
                        "summary_input": summary_block,
                        "timestamp": match_time,
                        "video_id": video_id,
                        "video_title": video_title
                    }
                ))

        all_hits_with_scores.sort(key=lambda x: x[0])
        sorted_hits = [hit for _, hit in all_hits_with_scores]
        return sorted_hits[offset:offset + top_k], len(sorted_hits)

    else:
        # Keyword mode: BM25
        tokenized_query = word_tokenize(query.lower())
        scores = bm25_index.get_scores(tokenized_query)
        sorted_indices = np.argsort(scores)[::-1]

        all_hits_with_scores = []
        for idx in sorted_indices:
            if scores[idx] <= 0:
                continue

            r = bm25_metadata[idx]
            video_id = r["video_id"]
            friendly_key = next((k for k, v in VIDEO_METADATA.items() if v["id"] == video_id), None)
            video_title = VIDEO_METADATA[friendly_key]["title"] if friendly_key else "Unknown Video"
            r["video_title"] = video_title

            all_hits_with_scores.append((scores[idx], r))

        all_hits_with_scores.sort(key=lambda x: x[0], reverse=True)
        sorted_hits = [hit for _, hit in all_hits_with_scores]
        return sorted_hits[offset:offset + top_k], len(sorted_hits)