# Global configuration — paths, models, metadata, and search settings from pathlib import Path # --- Directories & files --- ROOT = Path(__file__).resolve().parents[1] # project root (kis_project_v1.1/) DATA_DIR = ROOT / "data" SUBS_DIR = DATA_DIR / "subtitles" META_CSV = DATA_DIR / "metadata.csv" INDEX_DIR = DATA_DIR / "embeddings" FAISS_PATH = INDEX_DIR / "faiss.index" # --- Models & params EMBEDDING_MODEL = "all-MiniLM-L6-v2" SUMMARY_MODEL = "sshleifer/distilbart-cnn-12-6" LINES_PER_CHUNK = 40 # --- Unified video metadata --- VIDEO_METADATA = { "artificial intelligence": { "id": "SSE4M0gcmvE", "title": "Introduction to Artificial Intelligence | What Is AI? | Simplilearn" }, "machine learning": { "id": "ukzFI9rgwfU", "title": "Machine Learning | What Is Machine Learning? | Simplilearn" }, "deep learning": { "id": "FbxTVRfQFuI", "title": "Deep Learning Explained | Neural Networks | EdX" } } # --- Abbreviations for app suggestion logic ABBREVIATION_MAP = { "ml": "machine learning", "ai": "artificial intelligence", "dl": "deep learning", "nn": "neural network", "ann": "artificial neural network", "cnn": "convolutional neural network", "rnn": "recurrent neural network", "svm": "support vector machine", "knn": "k-nearest neighbors", "lr": "logistic regression", "gd": "gradient descent", "nlp": "natural language processing" } # --- Search settings --- SEARCH_CONFIG = { "embedding_model": EMBEDDING_MODEL, "faiss_top_k": 100, "results_per_page": 5 }