Spaces:
Sleeping
Sleeping
| from __future__ import annotations | |
| import importlib | |
| import logging | |
| import os | |
| from typing import TYPE_CHECKING | |
| from urllib.parse import urlparse | |
| import torch | |
| from modules import shared | |
| from modules.upscaler import Upscaler, UpscalerLanczos, UpscalerNearest, UpscalerNone | |
| if TYPE_CHECKING: | |
| import spandrel | |
| logger = logging.getLogger(__name__) | |
| def load_file_from_url( | |
| url: str, | |
| *, | |
| model_dir: str, | |
| progress: bool = True, | |
| file_name: str | None = None, | |
| hash_prefix: str | None = None, | |
| ) -> str: | |
| """Download a file from `url` into `model_dir`, using the file present if possible. | |
| Returns the path to the downloaded file. | |
| """ | |
| os.makedirs(model_dir, exist_ok=True) | |
| if not file_name: | |
| parts = urlparse(url) | |
| file_name = os.path.basename(parts.path) | |
| cached_file = os.path.abspath(os.path.join(model_dir, file_name)) | |
| if not os.path.exists(cached_file): | |
| print(f'Downloading: "{url}" to {cached_file}\n') | |
| from torch.hub import download_url_to_file | |
| download_url_to_file(url, cached_file, progress=progress, hash_prefix=hash_prefix) | |
| return cached_file | |
| def load_models(model_path: str, model_url: str = None, command_path: str = None, ext_filter=None, download_name=None, ext_blacklist=None, hash_prefix=None) -> list: | |
| """ | |
| A one-and done loader to try finding the desired models in specified directories. | |
| @param download_name: Specify to download from model_url immediately. | |
| @param model_url: If no other models are found, this will be downloaded on upscale. | |
| @param model_path: The location to store/find models in. | |
| @param command_path: A command-line argument to search for models in first. | |
| @param ext_filter: An optional list of filename extensions to filter by | |
| @param hash_prefix: the expected sha256 of the model_url | |
| @return: A list of paths containing the desired model(s) | |
| """ | |
| output = [] | |
| try: | |
| places = [] | |
| if command_path is not None and command_path != model_path: | |
| pretrained_path = os.path.join(command_path, 'experiments/pretrained_models') | |
| if os.path.exists(pretrained_path): | |
| print(f"Appending path: {pretrained_path}") | |
| places.append(pretrained_path) | |
| elif os.path.exists(command_path): | |
| places.append(command_path) | |
| places.append(model_path) | |
| for place in places: | |
| for full_path in shared.walk_files(place, allowed_extensions=ext_filter): | |
| if os.path.islink(full_path) and not os.path.exists(full_path): | |
| print(f"Skipping broken symlink: {full_path}") | |
| continue | |
| if ext_blacklist is not None and any(full_path.endswith(x) for x in ext_blacklist): | |
| continue | |
| if full_path not in output: | |
| output.append(full_path) | |
| if model_url is not None and len(output) == 0: | |
| if download_name is not None: | |
| output.append(load_file_from_url(model_url, model_dir=places[0], file_name=download_name, hash_prefix=hash_prefix)) | |
| else: | |
| output.append(model_url) | |
| except Exception: | |
| pass | |
| return output | |
| def friendly_name(file: str): | |
| if file.startswith("http"): | |
| file = urlparse(file).path | |
| file = os.path.basename(file) | |
| model_name, extension = os.path.splitext(file) | |
| return model_name | |
| def load_upscalers(): | |
| # We can only do this 'magic' method to dynamically load upscalers if they are referenced, | |
| # so we'll try to import any _model.py files before looking in __subclasses__ | |
| modules_dir = os.path.join(shared.script_path, "modules") | |
| for file in os.listdir(modules_dir): | |
| if "_model.py" in file: | |
| model_name = file.replace("_model.py", "") | |
| full_model = f"modules.{model_name}_model" | |
| try: | |
| importlib.import_module(full_model) | |
| except Exception: | |
| pass | |
| data = [] | |
| commandline_options = vars(shared.cmd_opts) | |
| # some of upscaler classes will not go away after reloading their modules, and we'll end | |
| # up with two copies of those classes. The newest copy will always be the last in the list, | |
| # so we go from end to beginning and ignore duplicates | |
| used_classes = {} | |
| for cls in reversed(Upscaler.__subclasses__()): | |
| classname = str(cls) | |
| if classname not in used_classes: | |
| used_classes[classname] = cls | |
| for cls in reversed(used_classes.values()): | |
| name = cls.__name__ | |
| cmd_name = f"{name.lower().replace('upscaler', '')}_models_path" | |
| commandline_model_path = commandline_options.get(cmd_name, None) | |
| scaler = cls(commandline_model_path) | |
| scaler.user_path = commandline_model_path | |
| scaler.model_download_path = commandline_model_path or scaler.model_path | |
| data += scaler.scalers | |
| shared.sd_upscalers = sorted( | |
| data, | |
| # Special case for UpscalerNone keeps it at the beginning of the list. | |
| key=lambda x: x.name.lower() if not isinstance(x.scaler, (UpscalerNone, UpscalerLanczos, UpscalerNearest)) else "" | |
| ) | |
| # None: not loaded, False: failed to load, True: loaded | |
| _spandrel_extra_init_state = None | |
| def _init_spandrel_extra_archs() -> None: | |
| """ | |
| Try to initialize `spandrel_extra_archs` (exactly once). | |
| """ | |
| global _spandrel_extra_init_state | |
| if _spandrel_extra_init_state is not None: | |
| return | |
| try: | |
| import spandrel | |
| import spandrel_extra_arches | |
| spandrel.MAIN_REGISTRY.add(*spandrel_extra_arches.EXTRA_REGISTRY) | |
| _spandrel_extra_init_state = True | |
| except Exception: | |
| logger.warning("Failed to load spandrel_extra_arches", exc_info=True) | |
| _spandrel_extra_init_state = False | |
| def load_spandrel_model( | |
| path: str | os.PathLike, | |
| *, | |
| device: str | torch.device | None, | |
| prefer_half: bool = False, | |
| dtype: str | torch.dtype | None = None, | |
| expected_architecture: str | None = None, | |
| ) -> spandrel.ModelDescriptor: | |
| global _spandrel_extra_init_state | |
| import spandrel | |
| _init_spandrel_extra_archs() | |
| model_descriptor = spandrel.ModelLoader(device=device).load_from_file(str(path)) | |
| arch = model_descriptor.architecture | |
| if expected_architecture and arch.name != expected_architecture: | |
| logger.warning( | |
| f"Model {path!r} is not a {expected_architecture!r} model (got {arch.name!r})", | |
| ) | |
| half = False | |
| if prefer_half: | |
| if model_descriptor.supports_half: | |
| model_descriptor.model.half() | |
| half = True | |
| else: | |
| logger.info("Model %s does not support half precision, ignoring --half", path) | |
| if dtype: | |
| model_descriptor.model.to(dtype=dtype) | |
| model_descriptor.model.eval() | |
| logger.debug( | |
| "Loaded %s from %s (device=%s, half=%s, dtype=%s)", | |
| arch, path, device, half, dtype, | |
| ) | |
| return model_descriptor | |