import gradio as gr from transformers import pipeline from PIL import Image TEXT_MODEL = "j-hartmann/emotion-english-distilroberta-base" IMAGE_MODEL = "trpakov/vit-face-expression" AUDIO_MODEL = "superb/hubert-large-superb-er" text_pipe = pipeline("text-classification", model=TEXT_MODEL, return_all_scores=True) image_pipe = pipeline("image-classification", model=IMAGE_MODEL, top_k=None) audio_pipe = pipeline("audio-classification", model=AUDIO_MODEL, top_k=None) def _as_label_dict(preds): preds_sorted = sorted(preds, key=lambda p: p["score"], reverse=True) return {p["label"]: float(round(p["score"], 4)) for p in preds_sorted} def analyze_text(text: str): if not text or not text.strip(): return {"(enter some text)": 1.0} preds = text_pipe(text)[0] return _as_label_dict(preds) def analyze_face(img): if img is None: return {"(no image)": 1.0} if isinstance(img, Image.Image): pil = img else: pil = Image.fromarray(img) preds = image_pipe(pil) return _as_label_dict(preds) def analyze_voice(audio_path): if audio_path is None: return {"(no audio)": 1.0} preds = audio_pipe(audio_path) return _as_label_dict(preds) with gr.Blocks(title="Empath AI — Multimodal Emotion Detection") as demo: gr.Markdown( """ # Empath AI — Emotion Detection (Text • Face • Voice) Grant permission when the browser asks for **camera/microphone**. Nothing is stored; analysis happens in memory and the scores are shown back to you. """ ) with gr.Tab("Text"): t_in = gr.Textbox(label="Enter text", lines=3, placeholder="Type something here…") t_btn = gr.Button("Analyze Text", variant="primary") t_out = gr.Label(num_top_classes=3) t_btn.click(analyze_text, inputs=t_in, outputs=t_out) with gr.Tab("Face (Webcam or Upload)"): i_in = gr.Image(sources=["webcam", "upload"], type="pil", label="Webcam / Upload") i_btn = gr.Button("Analyze Face", variant="primary") i_out = gr.Label(num_top_classes=3) i_btn.click(analyze_face, inputs=i_in, outputs=i_out) with gr.Tab("Voice (Mic or Upload)"): a_in = gr.Audio(sources=["microphone", "upload"], type="filepath", label="Record or upload a short clip (≤30s)") a_btn = gr.Button("Analyze Voice", variant="primary") a_out = gr.Label(num_top_classes=3) a_btn.click(analyze_voice, inputs=a_in, outputs=a_out) demo.launch()