Spaces:
Running
on
T4
Running
on
T4
| import time | |
| import os | |
| import re | |
| import torch | |
| import torchaudio | |
| import gradio as gr | |
| import spaces | |
| from transformers import AutoFeatureExtractor, AutoTokenizer, WhisperForConditionalGeneration, WhisperProcessor, pipeline | |
| from huggingface_hub import model_info | |
| try: | |
| import flash_attn | |
| FLASH_ATTENTION = True | |
| except ImportError: | |
| FLASH_ATTENTION = False | |
| import yt_dlp # Added import for yt-dlp | |
| MODEL_NAME = "NbAiLab/nb-whisper-large" | |
| max_audio_length = 30 * 60 | |
| share = (os.environ.get("SHARE", "False")[0].lower() in "ty1") or None | |
| auth_token = os.environ.get("AUTH_TOKEN") or True | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| print(f"Bruker enhet: {device}") | |
| def pipe(file, return_timestamps=False, lang="no"): | |
| asr = pipeline( | |
| task="automatic-speech-recognition", | |
| model=MODEL_NAME, | |
| chunk_length_s=28, | |
| device=device, | |
| token=auth_token, | |
| torch_dtype=torch.float16, | |
| model_kwargs={"attn_implementation": "flash_attention_2", "num_beams": 5, "language": lang} if FLASH_ATTENTION else {"attn_implementation": "sdpa", "num_beams": 5}, | |
| ) | |
| asr.model.config.forced_decoder_ids = asr.tokenizer.get_decoder_prompt_ids( | |
| language=lang, | |
| task="transcribe", | |
| no_timestamps=not return_timestamps, | |
| ) | |
| return asr(file, return_timestamps=return_timestamps, batch_size=24, generate_kwargs={'task': 'transcribe', 'language': lang}) | |
| def format_output(text): | |
| text = re.sub(r'(\.{3,}|[.!:?])', lambda m: m.group() + '<br>', text) | |
| return text | |
| def transcribe(file, return_timestamps=False, lang_nn=False): | |
| waveform, sample_rate = torchaudio.load(file) | |
| audio_duration = waveform.size(1) / sample_rate | |
| warning_message = None | |
| if audio_duration > max_audio_length: | |
| warning_message = ( | |
| "<b style='color:red;'>⚠️ Advarsel:</b> " | |
| "Lydfilen er lengre enn 30 minutter. Kun de første 30 minuttene vil bli transkribert." | |
| ) | |
| waveform = waveform[:, :int(max_audio_length * sample_rate)] | |
| truncated_file = "truncated_audio.wav" | |
| torchaudio.save(truncated_file, waveform, sample_rate) | |
| file_to_transcribe = truncated_file | |
| truncated = True | |
| else: | |
| file_to_transcribe = file | |
| truncated = False | |
| if not lang_nn: | |
| if not return_timestamps: | |
| text = pipe(file_to_transcribe)["text"] | |
| formatted_text = format_output(text) | |
| else: | |
| chunks = pipe(file_to_transcribe, return_timestamps=True)["chunks"] | |
| text = [] | |
| for chunk in chunks: | |
| start_time = time.strftime('%H:%M:%S', time.gmtime(chunk["timestamp"][0])) if chunk["timestamp"][0] is not None else "??:??:??" | |
| end_time = time.strftime('%H:%M:%S', time.gmtime(chunk["timestamp"][1])) if chunk["timestamp"][1] is not None else "??:??:??" | |
| line = f"[{start_time} -> {end_time}] {chunk['text']}" | |
| text.append(line) | |
| formatted_text = "<br>".join(text) | |
| else: | |
| if not return_timestamps: | |
| text = pipe(file_to_transcribe, lang="nn")["text"] | |
| formatted_text = format_output(text) | |
| else: | |
| chunks = pipe(file_to_transcribe, return_timestamps=True, lang="nn")["chunks"] | |
| text = [] | |
| for chunk in chunks: | |
| start_time = time.strftime('%H:%M:%S', time.gmtime(chunk["timestamp"][0])) if chunk["timestamp"][0] is not None else "??:??:??" | |
| end_time = time.strftime('%H:%M:%S', time.gmtime(chunk["timestamp"][1])) if chunk["timestamp"][1] is not None else "??:??:??" | |
| line = f"[{start_time} -> {end_time}] {chunk['text']}" | |
| text.append(line) | |
| formatted_text = "<br>".join(text) | |
| output_file = "transcription.txt" | |
| with open(output_file, "w") as f: | |
| f.write(re.sub('<br>', '\n', formatted_text)) | |
| if truncated: | |
| link="https://github.com/NbAiLab/nostram/blob/main/leverandorer.md" | |
| disclaimer = ( | |
| "\n\n Dette er en demo. Det er ikke tillatt å bruke denne teksten i profesjonell sammenheng. " | |
| "Vi anbefaler at hvis du trenger å transkribere lengre opptak, så kjører du enten modellen lokalt " | |
| "eller sjekker denne siden for å se hvem som leverer løsninger basert på NB-Whisper: " | |
| f"<a href='{link}' target='_blank'>denne siden</a>." | |
| ) | |
| formatted_text += f"<br><br><i>{disclaimer}</i>" | |
| formatted_text += "<br><br><i>Transkribert med NB-Whisper demo</i>" | |
| return warning_message, formatted_text, output_file | |
| def _return_yt_html_embed(yt_url): | |
| video_id = yt_url.split("?v=")[-1] | |
| HTML_str = ( | |
| f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' | |
| " </center>" | |
| ) | |
| return HTML_str | |
| def yt_transcribe(yt_url, return_timestamps=False): | |
| html_embed_str = _return_yt_html_embed(yt_url) | |
| ydl_opts = { | |
| 'format': 'bestaudio/best', | |
| 'outtmpl': 'audio.%(ext)s', | |
| 'postprocessors': [{ | |
| 'key': 'FFmpegExtractAudio', | |
| 'preferredcodec': 'mp3', | |
| 'preferredquality': '192', | |
| }], | |
| 'quiet': True, | |
| } | |
| with yt_dlp.YoutubeDL(ydl_opts) as ydl: | |
| ydl.download([yt_url]) | |
| text = transcribe("audio.mp3", return_timestamps=return_timestamps) | |
| return html_embed_str, text | |
| # Lag Gradio-appen uten faner | |
| demo = gr.Blocks(theme=gr.themes.Default(primary_hue=gr.themes.colors.green, secondary_hue=gr.themes.colors.red)) | |
| with demo: | |
| with gr.Column(): | |
| gr.HTML(f"<img src='file/Logonew.png' style='width:190px;'>") | |
| with gr.Column(scale=8): | |
| # Use Markdown for title and description | |
| gr.Markdown( | |
| """ | |
| <h1 style="font-size: 3.5em;">NB-Whisper Demo</h1> | |
| """ | |
| ) | |
| mf_transcribe = gr.Interface( | |
| fn=transcribe, | |
| inputs=[ | |
| gr.components.Audio(sources=['upload', 'microphone'], type="filepath"), | |
| gr.components.Checkbox(label="Inkluder tidskoder"), | |
| gr.components.Checkbox(label="Nynorsk"), | |
| ], | |
| outputs=[ | |
| gr.HTML(label="Varsel"), | |
| gr.HTML(label="text"), | |
| gr.File(label="Last ned transkripsjon") # Removed right side space in the box | |
| ], | |
| description=( | |
| "Demoen bruker" | |
| f" modellen [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) til å transkribere lydfiler opp til 30 minutter." | |
| ), | |
| allow_flagging="never", | |
| ) | |
| # Start demoen uten faner | |
| demo.launch(share=share, show_api=False, allowed_paths=["Logonew.png"]).queue() |