Spaces:
Sleeping
Sleeping
test
Browse files
app.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
import time
|
| 2 |
import os
|
|
|
|
| 3 |
|
| 4 |
import torch
|
| 5 |
|
|
@@ -21,14 +22,14 @@ lang = "no"
|
|
| 21 |
share = (os.environ.get("SHARE", "False")[0].lower() in "ty1") or None
|
| 22 |
auth_token = os.environ.get("AUTH_TOKEN") or True
|
| 23 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 24 |
-
print(f"
|
| 25 |
|
| 26 |
@spaces.GPU(duration=60 * 2)
|
| 27 |
def pipe(file, return_timestamps=False):
|
| 28 |
asr = pipeline(
|
| 29 |
task="automatic-speech-recognition",
|
| 30 |
model=MODEL_NAME,
|
| 31 |
-
chunk_length_s=
|
| 32 |
device=device,
|
| 33 |
token=auth_token,
|
| 34 |
torch_dtype=torch.float16,
|
|
@@ -41,9 +42,17 @@ def pipe(file, return_timestamps=False):
|
|
| 41 |
)
|
| 42 |
return asr(file, return_timestamps=return_timestamps, batch_size=24)
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
def transcribe(file, return_timestamps=False):
|
| 45 |
if not return_timestamps:
|
| 46 |
text = pipe(file)["text"]
|
|
|
|
| 47 |
else:
|
| 48 |
chunks = pipe(file, return_timestamps=True)["chunks"]
|
| 49 |
text = []
|
|
@@ -52,8 +61,8 @@ def transcribe(file, return_timestamps=False):
|
|
| 52 |
end_time = time.strftime('%H:%M:%S', time.gmtime(chunk["timestamp"][1])) if chunk["timestamp"][1] is not None else "??:??:??"
|
| 53 |
line = f"[{start_time} -> {end_time}] {chunk['text']}"
|
| 54 |
text.append(line)
|
| 55 |
-
|
| 56 |
-
return
|
| 57 |
|
| 58 |
def _return_yt_html_embed(yt_url):
|
| 59 |
video_id = yt_url.split("?v=")[-1]
|
|
@@ -83,49 +92,44 @@ def yt_transcribe(yt_url, return_timestamps=False):
|
|
| 83 |
|
| 84 |
return html_embed_str, text
|
| 85 |
|
| 86 |
-
|
| 87 |
|
| 88 |
-
|
| 89 |
-
fn=transcribe,
|
| 90 |
-
inputs=[
|
| 91 |
-
gr.components.Audio(sources=['upload', 'microphone'], type="filepath"),
|
| 92 |
-
gr.components.Checkbox(label="Return timestamps"),
|
| 93 |
-
],
|
| 94 |
-
outputs="text",
|
| 95 |
-
title="NB-Whisper",
|
| 96 |
-
description=(
|
| 97 |
-
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the the fine-tuned"
|
| 98 |
-
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
| 99 |
-
" of arbitrary length."
|
| 100 |
-
),
|
| 101 |
-
allow_flagging="never",
|
| 102 |
-
)
|
| 103 |
-
|
| 104 |
-
yt_transcribe_interface = gr.Interface(
|
| 105 |
-
fn=yt_transcribe,
|
| 106 |
-
inputs=[
|
| 107 |
-
gr.components.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
| 108 |
-
gr.components.Checkbox(label="Return timestamps"),
|
| 109 |
-
],
|
| 110 |
-
examples=[["https://www.youtube.com/watch?v=mukeSSa5GKo"]],
|
| 111 |
-
outputs=["html", "text"],
|
| 112 |
-
title="Whisper Demo: Transcribe YouTube",
|
| 113 |
-
description=(
|
| 114 |
-
"Transcribe long-form YouTube videos with the click of a button! Demo uses the the fine-tuned checkpoint:"
|
| 115 |
-
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files of"
|
| 116 |
-
" arbitrary length."
|
| 117 |
-
),
|
| 118 |
-
allow_flagging="never",
|
| 119 |
-
)
|
| 120 |
|
| 121 |
with demo:
|
| 122 |
-
gr.
|
| 123 |
-
|
| 124 |
-
|
|
|
|
|
|
|
| 125 |
],
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
)
|
| 130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
demo.launch(share=share).queue()
|
|
|
|
| 1 |
import time
|
| 2 |
import os
|
| 3 |
+
import re
|
| 4 |
|
| 5 |
import torch
|
| 6 |
|
|
|
|
| 22 |
share = (os.environ.get("SHARE", "False")[0].lower() in "ty1") or None
|
| 23 |
auth_token = os.environ.get("AUTH_TOKEN") or True
|
| 24 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 25 |
+
print(f"Bruker enhet: {device}")
|
| 26 |
|
| 27 |
@spaces.GPU(duration=60 * 2)
|
| 28 |
def pipe(file, return_timestamps=False):
|
| 29 |
asr = pipeline(
|
| 30 |
task="automatic-speech-recognition",
|
| 31 |
model=MODEL_NAME,
|
| 32 |
+
chunk_length_s=30,
|
| 33 |
device=device,
|
| 34 |
token=auth_token,
|
| 35 |
torch_dtype=torch.float16,
|
|
|
|
| 42 |
)
|
| 43 |
return asr(file, return_timestamps=return_timestamps, batch_size=24)
|
| 44 |
|
| 45 |
+
def format_output(text):
|
| 46 |
+
# Add a newline after ".", "!", ":", or "?" unless part of sequences like "..."
|
| 47 |
+
text = re.sub(r'(?<!\.)[.!:?](?!\.)', lambda m: m.group() + '\n', text)
|
| 48 |
+
# Ensure newline after sequences like "..." or other punctuation patterns
|
| 49 |
+
text = re.sub(r'(\.{3,}|[.!:?])', lambda m: m.group() + '\n', text)
|
| 50 |
+
return text
|
| 51 |
+
|
| 52 |
def transcribe(file, return_timestamps=False):
|
| 53 |
if not return_timestamps:
|
| 54 |
text = pipe(file)["text"]
|
| 55 |
+
formatted_text = format_output(text)
|
| 56 |
else:
|
| 57 |
chunks = pipe(file, return_timestamps=True)["chunks"]
|
| 58 |
text = []
|
|
|
|
| 61 |
end_time = time.strftime('%H:%M:%S', time.gmtime(chunk["timestamp"][1])) if chunk["timestamp"][1] is not None else "??:??:??"
|
| 62 |
line = f"[{start_time} -> {end_time}] {chunk['text']}"
|
| 63 |
text.append(line)
|
| 64 |
+
formatted_text = "\n".join(text)
|
| 65 |
+
return formatted_text
|
| 66 |
|
| 67 |
def _return_yt_html_embed(yt_url):
|
| 68 |
video_id = yt_url.split("?v=")[-1]
|
|
|
|
| 92 |
|
| 93 |
return html_embed_str, text
|
| 94 |
|
| 95 |
+
# Lag Gradio-appen uten faner
|
| 96 |
|
| 97 |
+
demo = gr.Blocks()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
with demo:
|
| 100 |
+
mf_transcribe = gr.Interface(
|
| 101 |
+
fn=transcribe,
|
| 102 |
+
inputs=[
|
| 103 |
+
gr.components.Audio(sources=['upload', 'microphone'], type="filepath"),
|
| 104 |
+
gr.components.Checkbox(label="Inkluder tidsstempler"),
|
| 105 |
],
|
| 106 |
+
outputs="text",
|
| 107 |
+
title="NB-Whisper",
|
| 108 |
+
description=(
|
| 109 |
+
"Transkriber lange lydopptak fra mikrofon eller lydfiler med et enkelt klikk! Demoen bruker den fintunede"
|
| 110 |
+
f" modellen [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) og 🤗 Transformers til å transkribere lydfiler"
|
| 111 |
+
" av vilkårlig lengde."
|
| 112 |
+
),
|
| 113 |
+
allow_flagging="never",
|
| 114 |
)
|
| 115 |
|
| 116 |
+
# Uncomment to add the YouTube transcription interface if needed
|
| 117 |
+
# yt_transcribe_interface = gr.Interface(
|
| 118 |
+
# fn=yt_transcribe,
|
| 119 |
+
# inputs=[
|
| 120 |
+
# gr.components.Textbox(lines=1, placeholder="Lim inn URL til en YouTube-video her", label="YouTube URL"),
|
| 121 |
+
# gr.components.Checkbox(label="Inkluder tidsstempler"),
|
| 122 |
+
# ],
|
| 123 |
+
# examples=[["https://www.youtube.com/watch?v=mukeSSa5GKo"]],
|
| 124 |
+
# outputs=["html", "text"],
|
| 125 |
+
# title="Whisper Demo: Transkriber YouTube",
|
| 126 |
+
# description=(
|
| 127 |
+
# "Transkriber lange YouTube-videoer med et enkelt klikk! Demoen bruker den fintunede modellen:"
|
| 128 |
+
# f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) og 🤗 Transformers til å transkribere lydfiler av"
|
| 129 |
+
# " vilkårlig lengde."
|
| 130 |
+
# ),
|
| 131 |
+
# allow_flagging="never",
|
| 132 |
+
# )
|
| 133 |
+
|
| 134 |
+
# Start demoen uten faner
|
| 135 |
demo.launch(share=share).queue()
|