Spaces:
Running
on
T4
Running
on
T4
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,6 +3,7 @@ import os
|
|
| 3 |
import re
|
| 4 |
|
| 5 |
import torch
|
|
|
|
| 6 |
|
| 7 |
import gradio as gr
|
| 8 |
import spaces
|
|
@@ -21,6 +22,8 @@ lang = "no"
|
|
| 21 |
|
| 22 |
logo_path = os.path.join(os.path.dirname(__file__), "Logo_2.png")
|
| 23 |
|
|
|
|
|
|
|
| 24 |
share = (os.environ.get("SHARE", "False")[0].lower() in "ty1") or None
|
| 25 |
auth_token = os.environ.get("AUTH_TOKEN") or True
|
| 26 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
@@ -52,11 +55,25 @@ def format_output(text):
|
|
| 52 |
return text
|
| 53 |
|
| 54 |
def transcribe(file, return_timestamps=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
if not return_timestamps:
|
| 56 |
-
text = pipe(
|
| 57 |
formatted_text = format_output(text)
|
| 58 |
else:
|
| 59 |
-
chunks = pipe(
|
| 60 |
text = []
|
| 61 |
for chunk in chunks:
|
| 62 |
start_time = time.strftime('%H:%M:%S', time.gmtime(chunk["timestamp"][0])) if chunk["timestamp"][0] is not None else "??:??:??"
|
|
@@ -64,7 +81,19 @@ def transcribe(file, return_timestamps=False):
|
|
| 64 |
line = f"[{start_time} -> {end_time}] {chunk['text']}"
|
| 65 |
text.append(line)
|
| 66 |
formatted_text = "\n".join(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
formatted_text += "<br><br><i>Transkribert med NB-Whisper demo</i>"
|
|
|
|
|
|
|
| 68 |
return formatted_text
|
| 69 |
|
| 70 |
def _return_yt_html_embed(yt_url):
|
|
@@ -101,13 +130,6 @@ demo = gr.Blocks()
|
|
| 101 |
|
| 102 |
with demo:
|
| 103 |
with gr.Row():
|
| 104 |
-
#with gr.Column(scale=1, min_width=120):
|
| 105 |
-
#gr.Markdown(
|
| 106 |
-
#f"""
|
| 107 |
-
#gr.Markdown("!local img[]({logo_path})")
|
| 108 |
-
|
| 109 |
-
#"""
|
| 110 |
-
#)
|
| 111 |
gr.HTML("<img src='file/Logo_2.png'>")
|
| 112 |
with gr.Column(scale=8):
|
| 113 |
# Use Markdown for title and description
|
|
|
|
| 3 |
import re
|
| 4 |
|
| 5 |
import torch
|
| 6 |
+
import torchaudio
|
| 7 |
|
| 8 |
import gradio as gr
|
| 9 |
import spaces
|
|
|
|
| 22 |
|
| 23 |
logo_path = os.path.join(os.path.dirname(__file__), "Logo_2.png")
|
| 24 |
|
| 25 |
+
max_audio_length= 1 * 60
|
| 26 |
+
|
| 27 |
share = (os.environ.get("SHARE", "False")[0].lower() in "ty1") or None
|
| 28 |
auth_token = os.environ.get("AUTH_TOKEN") or True
|
| 29 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
|
|
| 55 |
return text
|
| 56 |
|
| 57 |
def transcribe(file, return_timestamps=False):
|
| 58 |
+
waveform, sample_rate = torchaudio.load(file)
|
| 59 |
+
audio_duration = waveform.size(1) / sample_rate
|
| 60 |
+
|
| 61 |
+
if audio_duration > MAX_AUDIO_LENGTH:
|
| 62 |
+
# Trim the waveform to the first 30 minutes
|
| 63 |
+
waveform = waveform[:, :int(MAX_AUDIO_LENGTH * sample_rate)]
|
| 64 |
+
truncated_file = "truncated_audio.wav"
|
| 65 |
+
torchaudio.save(truncated_file, waveform, sample_rate)
|
| 66 |
+
file_to_transcribe = truncated_file
|
| 67 |
+
truncated = True
|
| 68 |
+
else:
|
| 69 |
+
file_to_transcribe = file
|
| 70 |
+
truncated = False
|
| 71 |
+
|
| 72 |
if not return_timestamps:
|
| 73 |
+
text = pipe(file_to_transcribe)["text"]
|
| 74 |
formatted_text = format_output(text)
|
| 75 |
else:
|
| 76 |
+
chunks = pipe(file_to_transcribe, return_timestamps=True)["chunks"]
|
| 77 |
text = []
|
| 78 |
for chunk in chunks:
|
| 79 |
start_time = time.strftime('%H:%M:%S', time.gmtime(chunk["timestamp"][0])) if chunk["timestamp"][0] is not None else "??:??:??"
|
|
|
|
| 81 |
line = f"[{start_time} -> {end_time}] {chunk['text']}"
|
| 82 |
text.append(line)
|
| 83 |
formatted_text = "\n".join(text)
|
| 84 |
+
|
| 85 |
+
if truncated:
|
| 86 |
+
disclaimer = (
|
| 87 |
+
"\n\nDette er en demo. Det er ikke tillatt å bruke denne teksten i profesjonell sammenheng. "
|
| 88 |
+
"Vi anbefaler at hvis du trenger å transkribere lengre opptak, så kjører du enten modellen lokalt "
|
| 89 |
+
"eller sjekker denne siden for å se hvem som leverer løsninger basert på NB-Whisper: "
|
| 90 |
+
"https://github.com/NbAiLab/nostram/blob/main/leverandorer.md"
|
| 91 |
+
)
|
| 92 |
+
formatted_text += f"<br><br><i>{disclaimer}</i>"
|
| 93 |
+
|
| 94 |
formatted_text += "<br><br><i>Transkribert med NB-Whisper demo</i>"
|
| 95 |
+
|
| 96 |
+
|
| 97 |
return formatted_text
|
| 98 |
|
| 99 |
def _return_yt_html_embed(yt_url):
|
|
|
|
| 130 |
|
| 131 |
with demo:
|
| 132 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
gr.HTML("<img src='file/Logo_2.png'>")
|
| 134 |
with gr.Column(scale=8):
|
| 135 |
# Use Markdown for title and description
|