Spaces:
Running
Running
| from transformers import AutoProcessor, AutoModelForImageTextToText | |
| import torch | |
| # https://huggingface.co/HuggingFaceTB/SmolVLM2-2.2B-Instruct | |
| # https://huggingface.co/HuggingFaceTB/SmolVLM2-500M-Video-Instruct | |
| # model_path = "HuggingFaceTB/SmolVLM2-2.2B-Instruct" | |
| # model_path = "HuggingFaceTB/SmolVLM2-500M-Video-Instruct" | |
| # Load model & processor | |
| model_name= "SmolVLM2-2.2B-Instruct" | |
| model_path=f"HuggingFaceTB/{model_name}" | |
| processor = AutoProcessor.from_pretrained(model_path) | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| model = AutoModelForImageTextToText.from_pretrained( | |
| model_path, | |
| torch_dtype=torch.float16, # Use FP16 for better performance on T4 | |
| device_map="auto" # Auto-assign model to GPU | |
| ).to(device) | |
| import torch | |
| import os | |
| def describe_image(image_path, user_prompt="Describe the image in detail.",system_role=""): | |
| global model, processor | |
| messages=[] | |
| if not os.path.exists(image_path): | |
| return None | |
| if system_role!="": | |
| messages.append( { | |
| "role": "system", | |
| "content": [{"type": "text", "text": system_role}] | |
| }) | |
| messages.append( | |
| { | |
| "role": "user", | |
| "content": [ | |
| {"type": "text", "text": user_prompt}, | |
| {"type": "image", "path": image_path}, | |
| ] | |
| } | |
| ) | |
| # Prepare input | |
| inputs = processor.apply_chat_template( | |
| messages, | |
| add_generation_prompt=True, | |
| tokenize=True, | |
| return_dict=True, | |
| return_tensors="pt", | |
| ).to(model.device) | |
| # Convert only float32 tensors to float16 | |
| for k, v in inputs.items(): | |
| if v.dtype == torch.float32: | |
| inputs[k] = v.to(torch.float16) | |
| # Generate response | |
| generated_ids = model.generate(**inputs, do_sample=False, max_new_tokens=1024) | |
| # Decode and return output | |
| generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True) | |
| return generated_texts[0].split("Assistant:")[-1].replace("\n\n\n\n\n\n", "").strip() | |
| import gradio as gr | |
| def ui(): | |
| return gr.Interface( | |
| fn=describe_image, | |
| inputs=[ | |
| gr.Image(type="filepath", label="Upload Image"), | |
| gr.Textbox(value="Describe the image in detail.", label="User Prompt"), | |
| gr.Textbox(value="", label="System Role (Optional)") | |
| ], | |
| outputs=gr.Textbox(label="Image Description"), | |
| title="Image Captioning App", | |
| description="Upload an image and customize prompts to get a detailed description." | |
| ) | |
| demo=ui() | |
| demo.queue().launch() | |