Spaces:
Running
Running
| import gradio as gr | |
| import websockets | |
| import asyncio | |
| import json | |
| import base64 | |
| import os | |
| API_KEY = os.getenv('API_KEY') | |
| if not API_KEY: | |
| raise ValueError("API_KEY must be set in environment variables") | |
| async def process_audio_stream(audio_path, max_tokens): | |
| """ | |
| Process audio with streaming response via WebSocket | |
| """ | |
| if not audio_path: | |
| yield "Please upload or record an audio file first." | |
| return | |
| try: | |
| # Read audio file and convert to base64 bytes | |
| with open(audio_path, 'rb') as f: | |
| audio_bytes = f.read() | |
| base64_bytes = base64.b64encode(audio_bytes) | |
| # Connect to WebSocket | |
| async with websockets.connect('wss://nexa-omni.nexa4ai.com/ws/process-audio/?api_key=' + API_KEY) as websocket: | |
| # Send binary base64 audio data as bytes | |
| await websocket.send(base64_bytes) # Send the raw base64 bytes | |
| # Send parameters as JSON string | |
| await websocket.send(json.dumps({ | |
| "prompt": "", | |
| "max_tokens": max_tokens | |
| })) | |
| # Initialize response | |
| response = "" | |
| # Receive streaming response | |
| async for message in websocket: | |
| try: | |
| data = json.loads(message) | |
| if data["status"] == "generating": | |
| response += data["token"] | |
| yield response | |
| elif data["status"] == "complete": | |
| break | |
| elif data["status"] == "error": | |
| yield f"Error: {data['error']}" | |
| break | |
| except json.JSONDecodeError: | |
| continue | |
| except Exception as e: | |
| yield f"Error connecting to server: {str(e)}" | |
| # Create Gradio interface | |
| demo = gr.Interface( | |
| fn=process_audio_stream, | |
| inputs=[ | |
| gr.Audio( | |
| type="filepath", | |
| label="Upload or Record Audio", | |
| sources=["upload", "microphone"] | |
| ), | |
| gr.Slider( | |
| minimum=50, | |
| maximum=200, | |
| value=50, | |
| step=1, | |
| label="Max Tokens" | |
| ) | |
| ], | |
| outputs=gr.Textbox(label="Response", interactive=False), | |
| title="NEXA OmniAudio-2.6B", | |
| description=f""" | |
| OmniAudio-2.6B is a compact audio-language model optimized for edge deployment. | |
| Model Repo: <a href="https://huggingface.co/NexaAIDev/OmniAudio-2.6B">NexaAIDev/OmniAudio-2.6B</a> | |
| Blog: <a href="https://nexa.ai/blogs/omniaudio-2.6b">OmniAudio-2.6B Blog</a> | |
| Upload an audio file and optionally provide a prompt to analyze the audio content.""", | |
| examples=[ | |
| ["example_audios/voice_qa.mp3", 200], | |
| ["example_audios/voice_in_conversation.mp3", 200], | |
| ["example_audios/creative_content_generation.mp3", 200], | |
| ["example_audios/record_summary.mp3", 200], | |
| ["example_audios/change_tone.mp3", 200], | |
| ] | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue().launch(server_name="0.0.0.0", server_port=7860) |