Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,46 +2,141 @@ import gradio as gr
|
|
| 2 |
import torch
|
| 3 |
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-small")
|
| 13 |
-
model = T5ForConditionalGeneration.from_pretrained("roborovski/superprompt-v1", torch_dtype=torch.float16)
|
| 14 |
-
|
| 15 |
-
model.to(device)
|
| 16 |
|
|
|
|
|
|
|
| 17 |
|
| 18 |
def generate(
|
| 19 |
-
prompt,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
):
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
input_text = f"{prompt}, {history}"
|
| 23 |
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device)
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
better_prompt = tokenizer.decode(outputs[0])
|
| 26 |
return better_prompt
|
| 27 |
|
| 28 |
-
additional_inputs=[
|
| 29 |
-
gr.Slider(
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
]
|
| 36 |
|
| 37 |
-
examples=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
gr.ChatInterface(
|
| 40 |
fn=generate,
|
| 41 |
-
chatbot=gr.Chatbot(
|
|
|
|
|
|
|
| 42 |
additional_inputs=additional_inputs,
|
| 43 |
title="SuperPrompt-v1",
|
| 44 |
-
description="Make your prompts more detailed!
|
| 45 |
examples=examples,
|
| 46 |
concurrency_limit=20,
|
| 47 |
).launch(show_api=False)
|
|
|
|
| 2 |
import torch
|
| 3 |
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
| 4 |
|
| 5 |
+
def load_model(model_path, dtype):
|
| 6 |
+
if dtype == "fp32":
|
| 7 |
+
torch_dtype = torch.float32
|
| 8 |
+
elif dtype == "fp16":
|
| 9 |
+
torch_dtype = torch.float16
|
| 10 |
+
else:
|
| 11 |
+
raise ValueError("Invalid dtype. Only 'fp32' or 'fp16' are supported.")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
+
model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch_dtype)
|
| 14 |
+
return model
|
| 15 |
|
| 16 |
def generate(
|
| 17 |
+
prompt,
|
| 18 |
+
history,
|
| 19 |
+
max_new_tokens,
|
| 20 |
+
repetition_penalty,
|
| 21 |
+
temperature,
|
| 22 |
+
top_p,
|
| 23 |
+
top_k,
|
| 24 |
+
seed,
|
| 25 |
+
model_path="roborovski/superprompt-v1",
|
| 26 |
+
dtype="fp16",
|
| 27 |
):
|
| 28 |
+
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-small")
|
| 29 |
+
model = load_model(model_path, dtype)
|
| 30 |
+
|
| 31 |
+
if torch.cuda.is_available():
|
| 32 |
+
device = "cuda"
|
| 33 |
+
print("Using GPU")
|
| 34 |
+
else:
|
| 35 |
+
device = "cpu"
|
| 36 |
+
print("Using CPU")
|
| 37 |
+
|
| 38 |
+
model.to(device)
|
| 39 |
+
|
| 40 |
input_text = f"{prompt}, {history}"
|
| 41 |
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device)
|
| 42 |
+
|
| 43 |
+
torch.manual_seed(seed)
|
| 44 |
+
outputs = model.generate(
|
| 45 |
+
input_ids,
|
| 46 |
+
max_new_tokens=max_new_tokens,
|
| 47 |
+
repetition_penalty=repetition_penalty,
|
| 48 |
+
do_sample=True,
|
| 49 |
+
temperature=temperature,
|
| 50 |
+
top_p=top_p,
|
| 51 |
+
top_k=top_k,
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
better_prompt = tokenizer.decode(outputs[0])
|
| 55 |
return better_prompt
|
| 56 |
|
| 57 |
+
additional_inputs = [
|
| 58 |
+
gr.Slider(
|
| 59 |
+
value=512,
|
| 60 |
+
minimum=250,
|
| 61 |
+
maximum=512,
|
| 62 |
+
step=1,
|
| 63 |
+
interactive=True,
|
| 64 |
+
label="Max New Tokens",
|
| 65 |
+
info="The maximum numbers of new tokens, controls how long is the output",
|
| 66 |
+
),
|
| 67 |
+
gr.Slider(
|
| 68 |
+
value=1.2,
|
| 69 |
+
minimum=0,
|
| 70 |
+
maximum=2,
|
| 71 |
+
step=0.05,
|
| 72 |
+
interactive=True,
|
| 73 |
+
label="Repetition Penalty",
|
| 74 |
+
info="Penalize repeated tokens, making the AI repeat less itself",
|
| 75 |
+
),
|
| 76 |
+
gr.Slider(
|
| 77 |
+
value=0.5,
|
| 78 |
+
minimum=0,
|
| 79 |
+
maximum=1,
|
| 80 |
+
step=0.05,
|
| 81 |
+
interactive=True,
|
| 82 |
+
label="Temperature",
|
| 83 |
+
info="Higher values produce more diverse outputs",
|
| 84 |
+
),
|
| 85 |
+
gr.Slider(
|
| 86 |
+
value=1,
|
| 87 |
+
minimum=0,
|
| 88 |
+
maximum=2,
|
| 89 |
+
step=0.05,
|
| 90 |
+
interactive=True,
|
| 91 |
+
label="Top P",
|
| 92 |
+
info="Higher values sample more low-probability tokens",
|
| 93 |
+
),
|
| 94 |
+
gr.Slider(
|
| 95 |
+
value=1,
|
| 96 |
+
minimum=1,
|
| 97 |
+
maximum=100,
|
| 98 |
+
step=1,
|
| 99 |
+
interactive=True,
|
| 100 |
+
label="Top K",
|
| 101 |
+
info="Higher k means more diverse outputs by considering a range of tokens",
|
| 102 |
+
),
|
| 103 |
+
gr.Number(
|
| 104 |
+
value=42,
|
| 105 |
+
interactive=True,
|
| 106 |
+
label="Seed",
|
| 107 |
+
info="A starting point to initiate the generation process",
|
| 108 |
+
),
|
| 109 |
+
gr.Radio(
|
| 110 |
+
choices=["fp32", "fp16"],
|
| 111 |
+
value="fp16",
|
| 112 |
+
label="Model Precision",
|
| 113 |
+
info="Select the precision of the model: fp32 or fp16",
|
| 114 |
+
),
|
| 115 |
]
|
| 116 |
|
| 117 |
+
examples = [
|
| 118 |
+
[
|
| 119 |
+
"Expand the following prompt to add more detail: A storefront with 'Text to Image' written on it.",
|
| 120 |
+
None,
|
| 121 |
+
None,
|
| 122 |
+
None,
|
| 123 |
+
None,
|
| 124 |
+
None,
|
| 125 |
+
None,
|
| 126 |
+
None,
|
| 127 |
+
"roborovski/superprompt-v1",
|
| 128 |
+
"fp16",
|
| 129 |
+
]
|
| 130 |
+
]
|
| 131 |
|
| 132 |
gr.ChatInterface(
|
| 133 |
fn=generate,
|
| 134 |
+
chatbot=gr.Chatbot(
|
| 135 |
+
show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"
|
| 136 |
+
),
|
| 137 |
additional_inputs=additional_inputs,
|
| 138 |
title="SuperPrompt-v1",
|
| 139 |
+
description="Make your prompts more detailed!",
|
| 140 |
examples=examples,
|
| 141 |
concurrency_limit=20,
|
| 142 |
).launch(show_api=False)
|